Triamcinolone Acetonide affects TGF-β signaling regulation of fibrosis in idiopathic carpal tunnel syndrome

Tai Hua Yang, Anne Gingery, Andrew R. Thoreson, Dirk R. Larson, Chunfeng Zhao, Peter C. Amadio

Research output: Contribution to journalArticlepeer-review

Abstract

Background: Fibroblast behavior and cell-matrix interactions of cells from normal and idiopathic carpal tunnel syndrome (CTS) subsynovial connective tissue (SSCT) with and without Triamcinolone Acetonide (TA) were compared in this study. A cell-seeded gel contraction model was applied to investigate the effect of steroid treatment on SSCT fibroblast gene expression and function. Methods: SSCT cells were obtained from CTS patients and fresh cadavers. Cells were isolated by mechanical and collagenase digestion. Collagen gels (1 mg/ml) were prepared with SSCT cells (1 × 106/mL). A sterile Petri dish with a cloning ring in the center was prepared. The area between the ring and outer dish was filled with cell-seeded collagen solution and gelled for 1 h. The gel was released from the outer way of the petri dish to allow gel contraction. Cell seeded gels were treated with 10 M triamcinolone acetonide (TA) or vehicle (DMSO) in modified MEM. Every 4 h for 3 days the contracting gels were photographed and areas calculated. Duplicate contraction tests were performed with each specimen, and the averages were used in the analyses, which were conducted using two-factor analysis of variance in a generalized linear model framework utilizing generalized estimating equations (GEE) to account for the correlation between samples. The contraction rate was determined by the area change over time, and the decay time constant was calculated. A customized mechanical test system was used to determine gel stiffness and tensile strength. Gene expression was assessed using Human Fibrosis and Cell Motility PCR arrays. Results: TA-treated gels had a significantly higher contraction rate, tensile strength and stiffness than the untreated gels. Proteinases involved in remodeling had increased expression in TA-treated gels of the patient group. Pro-fibrotic genes and ECM regulators, such as TGF-β, collagens and integrins, were down-regulated by TA, indicating that TA may work in part by decreasing fibrotic gene expression. Conclusions: This study showed that TA affects cell-matrix interaction and suppresses fibrotic gene expression in the SSCT cells of CTS patients.

Original languageEnglish (US)
Article number342
JournalBMC Musculoskeletal Disorders
Volume19
Issue number1
DOIs
StatePublished - Sep 22 2018

Keywords

  • Carpal tunnel syndrome
  • Collagen gel contraction
  • Fibrosis
  • Subsynovial connective tissue
  • Triamcinolone Acetonide

ASJC Scopus subject areas

  • Rheumatology
  • Orthopedics and Sports Medicine

Fingerprint

Dive into the research topics of 'Triamcinolone Acetonide affects TGF-β signaling regulation of fibrosis in idiopathic carpal tunnel syndrome'. Together they form a unique fingerprint.

Cite this