Thin filament regulation of force activation is not essential in single vascular smooth muscle cells

F. V. Brozovich, M. Yamakawa

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

To investigate thin filament regulation of force activation in smooth muscle, we recorded force and stiffness of α-toxin-permeabilized single smooth muscle cells. At pCa 9, the rigor state was characterized by high in- phase stiffness, low force, and low quadrature stiffness, suggesting that the attachment of rigor cross bridges does not depend on either Ca2+ or myosin light chain (MLC) phosphorylation, and cross bridges can enter a rigor state without producing force. At pCa 4, 20 μM ATP increased force, in-phase stiffness, and quadrature stiffness, while 20 μM CTP did not increase any of these parameters, suggesting that although MLC phosphorylation is not required for the formation of rigor cross bridges, MLC phosphorylation is required for detached cross bridges to attach to actin and undergo a force- producing isomerization. These results also suggest that for smooth muscle, force activation is regulated by myosin light-chain kinase. From rigor, 20 μM ATP (pCa 9) increased force and quadrature without changing in-phase stiffness. This force increase could be explained if in rigor solution both actomyosin (AM) and AM·ADP cross bridges exist (2, 32), and ATP-induced detachment of AM cross bridges is accompanied by AM·ADP cross bridges undergoing a force-producing isomerization in combination with cooperative cross-bridge reattachment (36). Thus results of our experiments suggest that thin filament-based regulation of force activation is not essential in smooth muscle, and a population of cross bridges must begin in an attached state for force to be produced in the absence of MLC phosphorylation.

Original languageEnglish (US)
Pages (from-to)C237-C242
JournalAmerican Journal of Physiology - Cell Physiology
Volume268
Issue number1 37-1
DOIs
StatePublished - 1995

ASJC Scopus subject areas

  • Physiology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Thin filament regulation of force activation is not essential in single vascular smooth muscle cells'. Together they form a unique fingerprint.

Cite this