The role of checkpoint kinase 1 in sensitivity to topoisomerase I poisons

Karen Flatten, Nga T. Dai, Benjamin T. Vroman, David Loegering, Charles Erlichman, Larry M. Karnitz, Scott H. Kaufmann

Research output: Contribution to journalArticlepeer-review

91 Scopus citations

Abstract

Agents that target topoisomerase I are widely utilized to treat human cancer. Previous studies have indicated that both the ataxia telangiectasia mutated (ATM)/ checkpoint kinase (Chk) 2 and ATM- and Rad 3-related (ATR)/Chk1 checkpoint pathways are activated after treatment with these agents. The relative contributions of these two pathways to survival of cells after treatment with topoisomerase I poisons are currently unknown. To address this issue, we assessed the roles of ATR, Chk1, ATM, and Chk2 in cells treated with the topoisomerase I poisons camptothecin and 7-ethyl-10-hydroxycamptothecin (SN-38), the active metabolite of irinotecan. Colony forming assays demonstrated that down-regulation of ATR or Chk1 sensitized cells to SN-38 and camptothecin. In contrast, ATM and Chk2 had minimal effect of sensitivity to SN-38 or camptothecin. Additional experiments demonstrated that the Hsp90 inhibitor 17-allylamino-17-demethoxygeldanamycin, which down-regulates Chk1, also sensitized a variety of human carcinoma cell lines to SN-38. Collectively, these results show that the ATR/Chk1 pathway plays a predominant role in the response to topoisomerase I inhibitors in carcinoma cells and identify a potential approach for enhancing the efficacy of these drugs.

Original languageEnglish (US)
Pages (from-to)14349-14355
Number of pages7
JournalJournal of Biological Chemistry
Volume280
Issue number14
DOIs
StatePublished - Apr 8 2005

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'The role of checkpoint kinase 1 in sensitivity to topoisomerase I poisons'. Together they form a unique fingerprint.

Cite this