The actin-myosin cytoskeleton mediates reversible agonist-induced membrane blebbing

Rochelle R. Torgerson, Mark A. McNiven

Research output: Contribution to journalArticle

85 Scopus citations

Abstract

Suprastimulation of pancreatic acinar cells with specific agonists inhibits zymogen secretion and induces formation of large basolateral blebs. Currently molecular mechanisms that mediate this dramatic morphologic response are undefined. Further, it is unclear if blebbing represents a terminal or reversible event. Using computer-enhanced video microscopy of living acini we have found that these large blebs form rapidly (within 2-3 minutes) and exhibit ameboid undulations. They are induced by small increases in agonist concentration and require an energy-dependent phosphorylation event. Remarkably, the blebs are rapidly absorbed when agonist levels are reduced, indicating that blebbing is a reversible response to a physiological stimulus, not a terminal event. Morphological methods show that these dramatic changes in cell shape are accompanied by a marked reorganization of actin and myosin II at the basolateral domain. During 30 minutes of suprastimulation, both basolateral actin and myosin II gradually increase to form a ring centered at the necks of the blebs. Immunocytochemical and biochemical studies with a phospho-specific antibody to the myosin regulatory light chain reveal an activation of myosin II in suprastimulated acini that is completely absent in resting cells. Studies using cytoskeletal antagonistic drugs indicate that bleb formation and motility require actin remodeling concomitant with an activation of myosin II. This aberrant activation and reorganization of the actin-myosin cytoskeleton is likely to have detrimental effects on acinar cell function. Additionally, this mechanism of bleb formation may be conserved among other forms of physiological blebbing events.

Original languageEnglish (US)
Pages (from-to)2911-2922
Number of pages12
JournalJournal of cell science
Volume111
Issue number19
StatePublished - Nov 11 1998

    Fingerprint

Keywords

  • Actin
  • Cytoskeleton
  • Myosin
  • Video microscopy

ASJC Scopus subject areas

  • Cell Biology

Cite this