Stimulation of ATPase activity of purified multidrug resistance- associated protein by nucleoside diphosphates

Xiu Bao Chang, Yue Xian Hou, John R. Riordan

Research output: Contribution to journalArticlepeer-review

36 Scopus citations

Abstract

Membrane vesicles prepared from cells expressing the multidrug resistance-associated protein (MRP) transport glutathione S-conjugates of hydrophobic substrates in an ATP dependent manner. Purified MRP possesses ATPase activity which can be further stimulated by anticancer drugs or leukotriene C4. However, the detailed relationship between ATP hydrolysis and drug transport has not been established. How the ATPase activity of MRP is regulated in the cell is also not known. In this report, we have examined the effects of different nucleotides on the ATPase activity of purified MRP. We have found that pyrimidine nucleoside triphosphates have little effect on enzymatic activity. In contrast, purine nucleotides dATP, dGTP, and adenosine 5'-(β,γ-imido)triphosphate function as competitive inhibitors. Somewhat unexpectedly, low concentrations of all the nucleoside diphosphates (NDPs) tested, except UDP, stimulate the ATPase activity severalfold. ADP or GDP at higher concentrations was inhibitory, reflecting NDP binding to the substrate site. On the other hand, the enhancement of hydrolysis at low NDP concentrations must reflect interactions with a separate site. Therefore, we postulate the presence of at least two types of nucleotide binding sites on the MRP, a catalytic site(s) to which ATP preferentially binds and is hydrolyzed and a regulatory site to which NDPs preferentially bind and stimulate hydrolysis. Interestingly, the stimulatory effects of drugs transported by MRP and NDPs are not additive, i.e. drugs are not able to further stimulate the NDP-activated enzyme. Hence, the two activation pathways intersect at some point. Since both nucleotide binding domains of MRP are likely to be required for drug stimulation of ATPase activity, the two sites that we postulate may also involve both domains.

Original languageEnglish (US)
Pages (from-to)23844-23848
Number of pages5
JournalJournal of Biological Chemistry
Volume273
Issue number37
DOIs
StatePublished - Sep 11 1998

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint

Dive into the research topics of 'Stimulation of ATPase activity of purified multidrug resistance- associated protein by nucleoside diphosphates'. Together they form a unique fingerprint.

Cite this