TY - JOUR
T1 - Simple risk model predicts incidence of atrial fibrillation in a racially and geographically diverse population
T2 - the CHARGE-AF consortium.
AU - Alonso, Alvaro
AU - Krijthe, Bouwe P.
AU - Aspelund, Thor
AU - Stepas, Katherine A.
AU - Pencina, Michael J.
AU - Moser, Carlee B.
AU - Sinner, Moritz F.
AU - Sotoodehnia, Nona
AU - Fontes, João D.
AU - Janssens, A. Cecile J.W.
AU - Kronmal, Richard A.
AU - Magnani, Jared W.
AU - Witteman, Jacqueline C.
AU - Chamberlain, Alanna M.
AU - Lubitz, Steven A.
AU - Schnabel, Renate B.
AU - Agarwal, Sunil K.
AU - McManus, David D.
AU - Ellinor, Patrick T.
AU - Larson, Martin G.
AU - Burke, Gregory L.
AU - Launer, Lenore J.
AU - Hofman, Albert
AU - Levy, Daniel
AU - Gottdiener, John S.
AU - Kääb, Stefan
AU - Couper, David
AU - Harris, Tamara B.
AU - Soliman, Elsayed Z.
AU - Stricker, Bruno H.C.
AU - Gudnason, Vilmundur
AU - Heckbert, Susan R.
AU - Benjamin, Emelia J.
PY - 2013/4
Y1 - 2013/4
N2 - Tools for the prediction of atrial fibrillation (AF) may identify high-risk individuals more likely to benefit from preventive interventions and serve as a benchmark to test novel putative risk factors. Individual-level data from 3 large cohorts in the United States (Atherosclerosis Risk in Communities [ARIC] study, the Cardiovascular Health Study [CHS], and the Framingham Heart Study [FHS]), including 18 556 men and women aged 46 to 94 years (19% African Americans, 81% whites) were pooled to derive predictive models for AF using clinical variables. Validation of the derived models was performed in 7672 participants from the Age, Gene and Environment-Reykjavik study (AGES) and the Rotterdam Study (RS). The analysis included 1186 incident AF cases in the derivation cohorts and 585 in the validation cohorts. A simple 5-year predictive model including the variables age, race, height, weight, systolic and diastolic blood pressure, current smoking, use of antihypertensive medication, diabetes, and history of myocardial infarction and heart failure had good discrimination (C-statistic, 0.765; 95% CI, 0.748 to 0.781). Addition of variables from the electrocardiogram did not improve the overall model discrimination (C-statistic, 0.767; 95% CI, 0.750 to 0.783; categorical net reclassification improvement, -0.0032; 95% CI, -0.0178 to 0.0113). In the validation cohorts, discrimination was acceptable (AGES C-statistic, 0.664; 95% CI, 0.632 to 0.697 and RS C-statistic, 0.705; 95% CI, 0.664 to 0.747) and calibration was adequate. A risk model including variables readily available in primary care settings adequately predicted AF in diverse populations from the United States and Europe.
AB - Tools for the prediction of atrial fibrillation (AF) may identify high-risk individuals more likely to benefit from preventive interventions and serve as a benchmark to test novel putative risk factors. Individual-level data from 3 large cohorts in the United States (Atherosclerosis Risk in Communities [ARIC] study, the Cardiovascular Health Study [CHS], and the Framingham Heart Study [FHS]), including 18 556 men and women aged 46 to 94 years (19% African Americans, 81% whites) were pooled to derive predictive models for AF using clinical variables. Validation of the derived models was performed in 7672 participants from the Age, Gene and Environment-Reykjavik study (AGES) and the Rotterdam Study (RS). The analysis included 1186 incident AF cases in the derivation cohorts and 585 in the validation cohorts. A simple 5-year predictive model including the variables age, race, height, weight, systolic and diastolic blood pressure, current smoking, use of antihypertensive medication, diabetes, and history of myocardial infarction and heart failure had good discrimination (C-statistic, 0.765; 95% CI, 0.748 to 0.781). Addition of variables from the electrocardiogram did not improve the overall model discrimination (C-statistic, 0.767; 95% CI, 0.750 to 0.783; categorical net reclassification improvement, -0.0032; 95% CI, -0.0178 to 0.0113). In the validation cohorts, discrimination was acceptable (AGES C-statistic, 0.664; 95% CI, 0.632 to 0.697 and RS C-statistic, 0.705; 95% CI, 0.664 to 0.747) and calibration was adequate. A risk model including variables readily available in primary care settings adequately predicted AF in diverse populations from the United States and Europe.
UR - http://www.scopus.com/inward/record.url?scp=84881087448&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84881087448&partnerID=8YFLogxK
U2 - 10.1161/JAHA.112.000102
DO - 10.1161/JAHA.112.000102
M3 - Article
C2 - 23537808
AN - SCOPUS:84881087448
SN - 1931-857X
VL - 2
SP - e000102
JO - American Journal of Physiology - Renal Fluid and Electrolyte Physiology
JF - American Journal of Physiology - Renal Fluid and Electrolyte Physiology
IS - 2
ER -