Short-term modulation of the androgen milieu alters pulsatile, but not exercise- or growth hormone (GH)-releasing hormone-stimulated GH secretion in healthy men: Impact of gonadal steroid and GH secretory changes on metabolic outcomes

David A. Fryburg, Arthur Weltman, Linda A. Jahn, Judy Y. Weltman, Eugene Samojlik, Raymond L. Hintz, Johannes D Veldhuis

Research output: Contribution to journalArticle

50 Citations (Scopus)

Abstract

Gonadal steroids are known to alter GH secretion as well as tissue metabolism. The present study was designed to examine the effects of short term (2- to 3-week) alterations in gonadal steroids on basal pulsatile (nonstimulated) and exercise- and GH-releasing hormone-stimulated GH secretion, urinary nitrogen excretion, and basal and exercise-stimulated oxygen consumption. Two protocols were conducted, which reflect a total of 18 separate studies. In the first paradigm, 5 healthy young men were each studied in a double blind, randomized manner during 3 different gonadal hormone manipulations, in which serum testosterone was varied from hypogonadal (induced by leuprolide) to eugonadal (saline injections) to high levels (testosterone enanthate, 3 mg/kg · week, im). There was a washout period of 8 weeks between treatments. In the second protocol, 3 of the original subjects were studied after 2 weeks of treatment with stanozolol (0.1 mg/kg · day). Two to 3 weeks after the desired changes in serum testosterone, each subject was admitted to the General Clinical Research Center for study. The hypogonadal state (serum testosterone, 33 ng/dL) increased urinary nitrogen loss (by 34%; P < 0.005) and decreased basal metabolic rate (by 12%; P < 0.02) compared with the eugonadal state (testosterone, 796 ng/dL). High dose testosterone (1609 ng/dL) further decreased urinary nitrogen loss over the eugonadal state (by 16%; P < 0.05). Stanozolol yielded the lowest urinary nitrogen excretion of all (P < 0.03). Like urinary nitrogen, the basal metabolic rate showed the greatest change between the hypogonadal and eugonadal states (12%; P < 0.02), with a lesser change during high dose testosterone treatment (4%). Analogously, end- exercise oxygen consumption rose by 11% between the hypogonadal and eugonadal states (P < 0.05). Between the hypogonadal and eugonadal states, no significant changes in pulsatile (nonstimulated), exercise-stimulated, or GRF-stimulated GH secretion or serum insulin-like growth factor I concentrations were observed. Raising testosterone to supraphysiological levels increased pulsatile GH secretion by 62% over that with leuprolide and by 22% over that with saline (P < 0.05). High dose testosterone treatment also increased serum insulin-like growth factor I concentrations by 21% and 34% over those during the eugonadal and hypogonadal states, respectively (P < 0.01). Testosterone did not affect either exercise- or GRF-stimulated GH secretion. In protocol 2, stanozolol did not affect any parameter of GH secretion. To examine the interaction between GH secretion and testosterone on urinary nitrogen excretion and basal metabolic rate, a one-way analysis of covariance was undertaken. Statistical examination of GH production as the covariate and testosterone (by tertile) as the interactive factor demonstrated significant relationships between serum testosterone levels and either urinary nitrogen (P < 0.02) or basal metabolic rate (P < 0.01), but not GH secretion (P = NS). In summary, these results demonstrate that short term modulation of the androgen milieu affects metabolic outcome without necessitating changes in GH secretion. These results have significance for both normal physiology and for the treatment of hypogonadal GH-deficient patients.

Original languageEnglish (US)
Pages (from-to)3710-3719
Number of pages10
JournalJournal of Clinical Endocrinology and Metabolism
Volume82
Issue number11
StatePublished - 1997
Externally publishedYes

Fingerprint

Growth Hormone-Releasing Hormone
Gonadal Steroid Hormones
Androgens
Growth Hormone
Testosterone
Modulation
Exercise
Nitrogen
Basal Metabolism
Stanozolol
Serum
Leuprolide
Insulin-Like Growth Factor I
Oxygen Consumption
Steroids
Oxygen
Gonadal Hormones
Therapeutics
Physiology
Metabolism

ASJC Scopus subject areas

  • Biochemistry
  • Endocrinology, Diabetes and Metabolism

Cite this

Short-term modulation of the androgen milieu alters pulsatile, but not exercise- or growth hormone (GH)-releasing hormone-stimulated GH secretion in healthy men : Impact of gonadal steroid and GH secretory changes on metabolic outcomes. / Fryburg, David A.; Weltman, Arthur; Jahn, Linda A.; Weltman, Judy Y.; Samojlik, Eugene; Hintz, Raymond L.; Veldhuis, Johannes D.

In: Journal of Clinical Endocrinology and Metabolism, Vol. 82, No. 11, 1997, p. 3710-3719.

Research output: Contribution to journalArticle

@article{7c96cfcb67de40d38e388bf789d02f99,
title = "Short-term modulation of the androgen milieu alters pulsatile, but not exercise- or growth hormone (GH)-releasing hormone-stimulated GH secretion in healthy men: Impact of gonadal steroid and GH secretory changes on metabolic outcomes",
abstract = "Gonadal steroids are known to alter GH secretion as well as tissue metabolism. The present study was designed to examine the effects of short term (2- to 3-week) alterations in gonadal steroids on basal pulsatile (nonstimulated) and exercise- and GH-releasing hormone-stimulated GH secretion, urinary nitrogen excretion, and basal and exercise-stimulated oxygen consumption. Two protocols were conducted, which reflect a total of 18 separate studies. In the first paradigm, 5 healthy young men were each studied in a double blind, randomized manner during 3 different gonadal hormone manipulations, in which serum testosterone was varied from hypogonadal (induced by leuprolide) to eugonadal (saline injections) to high levels (testosterone enanthate, 3 mg/kg · week, im). There was a washout period of 8 weeks between treatments. In the second protocol, 3 of the original subjects were studied after 2 weeks of treatment with stanozolol (0.1 mg/kg · day). Two to 3 weeks after the desired changes in serum testosterone, each subject was admitted to the General Clinical Research Center for study. The hypogonadal state (serum testosterone, 33 ng/dL) increased urinary nitrogen loss (by 34{\%}; P < 0.005) and decreased basal metabolic rate (by 12{\%}; P < 0.02) compared with the eugonadal state (testosterone, 796 ng/dL). High dose testosterone (1609 ng/dL) further decreased urinary nitrogen loss over the eugonadal state (by 16{\%}; P < 0.05). Stanozolol yielded the lowest urinary nitrogen excretion of all (P < 0.03). Like urinary nitrogen, the basal metabolic rate showed the greatest change between the hypogonadal and eugonadal states (12{\%}; P < 0.02), with a lesser change during high dose testosterone treatment (4{\%}). Analogously, end- exercise oxygen consumption rose by 11{\%} between the hypogonadal and eugonadal states (P < 0.05). Between the hypogonadal and eugonadal states, no significant changes in pulsatile (nonstimulated), exercise-stimulated, or GRF-stimulated GH secretion or serum insulin-like growth factor I concentrations were observed. Raising testosterone to supraphysiological levels increased pulsatile GH secretion by 62{\%} over that with leuprolide and by 22{\%} over that with saline (P < 0.05). High dose testosterone treatment also increased serum insulin-like growth factor I concentrations by 21{\%} and 34{\%} over those during the eugonadal and hypogonadal states, respectively (P < 0.01). Testosterone did not affect either exercise- or GRF-stimulated GH secretion. In protocol 2, stanozolol did not affect any parameter of GH secretion. To examine the interaction between GH secretion and testosterone on urinary nitrogen excretion and basal metabolic rate, a one-way analysis of covariance was undertaken. Statistical examination of GH production as the covariate and testosterone (by tertile) as the interactive factor demonstrated significant relationships between serum testosterone levels and either urinary nitrogen (P < 0.02) or basal metabolic rate (P < 0.01), but not GH secretion (P = NS). In summary, these results demonstrate that short term modulation of the androgen milieu affects metabolic outcome without necessitating changes in GH secretion. These results have significance for both normal physiology and for the treatment of hypogonadal GH-deficient patients.",
author = "Fryburg, {David A.} and Arthur Weltman and Jahn, {Linda A.} and Weltman, {Judy Y.} and Eugene Samojlik and Hintz, {Raymond L.} and Veldhuis, {Johannes D}",
year = "1997",
language = "English (US)",
volume = "82",
pages = "3710--3719",
journal = "Journal of Clinical Endocrinology and Metabolism",
issn = "0021-972X",
publisher = "The Endocrine Society",
number = "11",

}

TY - JOUR

T1 - Short-term modulation of the androgen milieu alters pulsatile, but not exercise- or growth hormone (GH)-releasing hormone-stimulated GH secretion in healthy men

T2 - Impact of gonadal steroid and GH secretory changes on metabolic outcomes

AU - Fryburg, David A.

AU - Weltman, Arthur

AU - Jahn, Linda A.

AU - Weltman, Judy Y.

AU - Samojlik, Eugene

AU - Hintz, Raymond L.

AU - Veldhuis, Johannes D

PY - 1997

Y1 - 1997

N2 - Gonadal steroids are known to alter GH secretion as well as tissue metabolism. The present study was designed to examine the effects of short term (2- to 3-week) alterations in gonadal steroids on basal pulsatile (nonstimulated) and exercise- and GH-releasing hormone-stimulated GH secretion, urinary nitrogen excretion, and basal and exercise-stimulated oxygen consumption. Two protocols were conducted, which reflect a total of 18 separate studies. In the first paradigm, 5 healthy young men were each studied in a double blind, randomized manner during 3 different gonadal hormone manipulations, in which serum testosterone was varied from hypogonadal (induced by leuprolide) to eugonadal (saline injections) to high levels (testosterone enanthate, 3 mg/kg · week, im). There was a washout period of 8 weeks between treatments. In the second protocol, 3 of the original subjects were studied after 2 weeks of treatment with stanozolol (0.1 mg/kg · day). Two to 3 weeks after the desired changes in serum testosterone, each subject was admitted to the General Clinical Research Center for study. The hypogonadal state (serum testosterone, 33 ng/dL) increased urinary nitrogen loss (by 34%; P < 0.005) and decreased basal metabolic rate (by 12%; P < 0.02) compared with the eugonadal state (testosterone, 796 ng/dL). High dose testosterone (1609 ng/dL) further decreased urinary nitrogen loss over the eugonadal state (by 16%; P < 0.05). Stanozolol yielded the lowest urinary nitrogen excretion of all (P < 0.03). Like urinary nitrogen, the basal metabolic rate showed the greatest change between the hypogonadal and eugonadal states (12%; P < 0.02), with a lesser change during high dose testosterone treatment (4%). Analogously, end- exercise oxygen consumption rose by 11% between the hypogonadal and eugonadal states (P < 0.05). Between the hypogonadal and eugonadal states, no significant changes in pulsatile (nonstimulated), exercise-stimulated, or GRF-stimulated GH secretion or serum insulin-like growth factor I concentrations were observed. Raising testosterone to supraphysiological levels increased pulsatile GH secretion by 62% over that with leuprolide and by 22% over that with saline (P < 0.05). High dose testosterone treatment also increased serum insulin-like growth factor I concentrations by 21% and 34% over those during the eugonadal and hypogonadal states, respectively (P < 0.01). Testosterone did not affect either exercise- or GRF-stimulated GH secretion. In protocol 2, stanozolol did not affect any parameter of GH secretion. To examine the interaction between GH secretion and testosterone on urinary nitrogen excretion and basal metabolic rate, a one-way analysis of covariance was undertaken. Statistical examination of GH production as the covariate and testosterone (by tertile) as the interactive factor demonstrated significant relationships between serum testosterone levels and either urinary nitrogen (P < 0.02) or basal metabolic rate (P < 0.01), but not GH secretion (P = NS). In summary, these results demonstrate that short term modulation of the androgen milieu affects metabolic outcome without necessitating changes in GH secretion. These results have significance for both normal physiology and for the treatment of hypogonadal GH-deficient patients.

AB - Gonadal steroids are known to alter GH secretion as well as tissue metabolism. The present study was designed to examine the effects of short term (2- to 3-week) alterations in gonadal steroids on basal pulsatile (nonstimulated) and exercise- and GH-releasing hormone-stimulated GH secretion, urinary nitrogen excretion, and basal and exercise-stimulated oxygen consumption. Two protocols were conducted, which reflect a total of 18 separate studies. In the first paradigm, 5 healthy young men were each studied in a double blind, randomized manner during 3 different gonadal hormone manipulations, in which serum testosterone was varied from hypogonadal (induced by leuprolide) to eugonadal (saline injections) to high levels (testosterone enanthate, 3 mg/kg · week, im). There was a washout period of 8 weeks between treatments. In the second protocol, 3 of the original subjects were studied after 2 weeks of treatment with stanozolol (0.1 mg/kg · day). Two to 3 weeks after the desired changes in serum testosterone, each subject was admitted to the General Clinical Research Center for study. The hypogonadal state (serum testosterone, 33 ng/dL) increased urinary nitrogen loss (by 34%; P < 0.005) and decreased basal metabolic rate (by 12%; P < 0.02) compared with the eugonadal state (testosterone, 796 ng/dL). High dose testosterone (1609 ng/dL) further decreased urinary nitrogen loss over the eugonadal state (by 16%; P < 0.05). Stanozolol yielded the lowest urinary nitrogen excretion of all (P < 0.03). Like urinary nitrogen, the basal metabolic rate showed the greatest change between the hypogonadal and eugonadal states (12%; P < 0.02), with a lesser change during high dose testosterone treatment (4%). Analogously, end- exercise oxygen consumption rose by 11% between the hypogonadal and eugonadal states (P < 0.05). Between the hypogonadal and eugonadal states, no significant changes in pulsatile (nonstimulated), exercise-stimulated, or GRF-stimulated GH secretion or serum insulin-like growth factor I concentrations were observed. Raising testosterone to supraphysiological levels increased pulsatile GH secretion by 62% over that with leuprolide and by 22% over that with saline (P < 0.05). High dose testosterone treatment also increased serum insulin-like growth factor I concentrations by 21% and 34% over those during the eugonadal and hypogonadal states, respectively (P < 0.01). Testosterone did not affect either exercise- or GRF-stimulated GH secretion. In protocol 2, stanozolol did not affect any parameter of GH secretion. To examine the interaction between GH secretion and testosterone on urinary nitrogen excretion and basal metabolic rate, a one-way analysis of covariance was undertaken. Statistical examination of GH production as the covariate and testosterone (by tertile) as the interactive factor demonstrated significant relationships between serum testosterone levels and either urinary nitrogen (P < 0.02) or basal metabolic rate (P < 0.01), but not GH secretion (P = NS). In summary, these results demonstrate that short term modulation of the androgen milieu affects metabolic outcome without necessitating changes in GH secretion. These results have significance for both normal physiology and for the treatment of hypogonadal GH-deficient patients.

UR - http://www.scopus.com/inward/record.url?scp=0030670646&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0030670646&partnerID=8YFLogxK

M3 - Article

C2 - 9360530

AN - SCOPUS:0030670646

VL - 82

SP - 3710

EP - 3719

JO - Journal of Clinical Endocrinology and Metabolism

JF - Journal of Clinical Endocrinology and Metabolism

SN - 0021-972X

IS - 11

ER -