Roles of cholecystokinin receptor phosphorylation in agonist-stimulated desensitization of pancreatic acinar cells and receptor-bearing Chinese hamster ovary cholecystokinin receptor cells

Rammohan V. Rao, Belinda F. Roettger, Elizabeth M. Hadac, Laurence J Miller

Research output: Contribution to journalArticle

36 Citations (Scopus)

Abstract

Receptor phosphorylation has been implicated in desensitization responses to some agonist ligands, in which receptors may become uncoupled from G proteins and move into cellular compartments inaccessible to hydrophilic ligands. Understanding of the linkage between these processes, however, has come largely from recombinant receptor-bearing cell systems with consensus sites of kinase action mutagenized. We recently established methodology permitting direct assessment of sites of phosphorylation of the cholecystokinin receptor (CCKR) in its native milieu in the pancreatic acinar cell and in a Chinese hamster ovary (CHO)-CCKR cell line (1, 2). Although CCK binding leads to phosphorylation of serine residues within the third intracellular loop of the receptor in both cell types, there are clear differences in the time course of phosphorylation, in the balance of action of kinases and a receptor phosphatase, and in a few of the distinct sites phosphorylated. In this work, we have directly assessed the inositol 1,4,5- triphosphate responses to CCK and desensitization of these responses in both cells. CHO cell lines expressing receptor mutants with protein kinase C consensus sites modified were also studied. CCK-stimulated inositol 1,4,5- triphosphate responses in both cells expressing wild-type receptors were rapidly and completely desensitized, associated with the onset of receptor phosphorylation. However, despite maintenance of the phosphorylated state of the receptor in the CHO-CCKR cell and its dephosphorylation returning the receptor to its basal state in the acinar cell, desensitization continued to be present in both. Mutagenesis of Ser260 and Ser264 to alanines individually reduced receptor phosphorylation by approximately 50%, whereas the dual mutant completely eliminated agonist-stimulated phosphorylation. Because other sites of phosphorylation were still intact in this construct, this raises the possibility of hierarchical phosphorylation with these two sites key in making other sites accessible to kinases. Constructs modifying Ser264 delayed the onset of desensitization, whereas all constructs proceeded to achieve complete desensitization by 10 min. Receptor internalization occurred independent of its phosphorylation state in the CHO cell lines, explaining the desensitization observed. In the acinar cell in which the receptor remains on the cell surface after agonist occupation, we postulate that receptor insulation achieves similar uncoupling from G protein association as is achieved by receptor phosphorylation early after agonist occupation.

Original languageEnglish (US)
Pages (from-to)185-192
Number of pages8
JournalMolecular Pharmacology
Volume51
Issue number2
StatePublished - Feb 1997

Fingerprint

Cholecystokinin Receptors
Acinar Cells
Cricetulus
Ovary
Phosphorylation
Inositol 1,4,5-Trisphosphate
Phosphotransferases
Occupations
GTP-Binding Proteins
Cell Line
Ligands
Mutant Proteins
Phosphoric Monoester Hydrolases
Mutagenesis
Alanine
Serine
Protein Kinase C

ASJC Scopus subject areas

  • Pharmacology

Cite this

Roles of cholecystokinin receptor phosphorylation in agonist-stimulated desensitization of pancreatic acinar cells and receptor-bearing Chinese hamster ovary cholecystokinin receptor cells. / Rao, Rammohan V.; Roettger, Belinda F.; Hadac, Elizabeth M.; Miller, Laurence J.

In: Molecular Pharmacology, Vol. 51, No. 2, 02.1997, p. 185-192.

Research output: Contribution to journalArticle

@article{7f110c4b378c466c964fdcfb3858f9c5,
title = "Roles of cholecystokinin receptor phosphorylation in agonist-stimulated desensitization of pancreatic acinar cells and receptor-bearing Chinese hamster ovary cholecystokinin receptor cells",
abstract = "Receptor phosphorylation has been implicated in desensitization responses to some agonist ligands, in which receptors may become uncoupled from G proteins and move into cellular compartments inaccessible to hydrophilic ligands. Understanding of the linkage between these processes, however, has come largely from recombinant receptor-bearing cell systems with consensus sites of kinase action mutagenized. We recently established methodology permitting direct assessment of sites of phosphorylation of the cholecystokinin receptor (CCKR) in its native milieu in the pancreatic acinar cell and in a Chinese hamster ovary (CHO)-CCKR cell line (1, 2). Although CCK binding leads to phosphorylation of serine residues within the third intracellular loop of the receptor in both cell types, there are clear differences in the time course of phosphorylation, in the balance of action of kinases and a receptor phosphatase, and in a few of the distinct sites phosphorylated. In this work, we have directly assessed the inositol 1,4,5- triphosphate responses to CCK and desensitization of these responses in both cells. CHO cell lines expressing receptor mutants with protein kinase C consensus sites modified were also studied. CCK-stimulated inositol 1,4,5- triphosphate responses in both cells expressing wild-type receptors were rapidly and completely desensitized, associated with the onset of receptor phosphorylation. However, despite maintenance of the phosphorylated state of the receptor in the CHO-CCKR cell and its dephosphorylation returning the receptor to its basal state in the acinar cell, desensitization continued to be present in both. Mutagenesis of Ser260 and Ser264 to alanines individually reduced receptor phosphorylation by approximately 50{\%}, whereas the dual mutant completely eliminated agonist-stimulated phosphorylation. Because other sites of phosphorylation were still intact in this construct, this raises the possibility of hierarchical phosphorylation with these two sites key in making other sites accessible to kinases. Constructs modifying Ser264 delayed the onset of desensitization, whereas all constructs proceeded to achieve complete desensitization by 10 min. Receptor internalization occurred independent of its phosphorylation state in the CHO cell lines, explaining the desensitization observed. In the acinar cell in which the receptor remains on the cell surface after agonist occupation, we postulate that receptor insulation achieves similar uncoupling from G protein association as is achieved by receptor phosphorylation early after agonist occupation.",
author = "Rao, {Rammohan V.} and Roettger, {Belinda F.} and Hadac, {Elizabeth M.} and Miller, {Laurence J}",
year = "1997",
month = "2",
language = "English (US)",
volume = "51",
pages = "185--192",
journal = "Molecular Pharmacology",
issn = "0026-895X",
publisher = "American Society for Pharmacology and Experimental Therapeutics",
number = "2",

}

TY - JOUR

T1 - Roles of cholecystokinin receptor phosphorylation in agonist-stimulated desensitization of pancreatic acinar cells and receptor-bearing Chinese hamster ovary cholecystokinin receptor cells

AU - Rao, Rammohan V.

AU - Roettger, Belinda F.

AU - Hadac, Elizabeth M.

AU - Miller, Laurence J

PY - 1997/2

Y1 - 1997/2

N2 - Receptor phosphorylation has been implicated in desensitization responses to some agonist ligands, in which receptors may become uncoupled from G proteins and move into cellular compartments inaccessible to hydrophilic ligands. Understanding of the linkage between these processes, however, has come largely from recombinant receptor-bearing cell systems with consensus sites of kinase action mutagenized. We recently established methodology permitting direct assessment of sites of phosphorylation of the cholecystokinin receptor (CCKR) in its native milieu in the pancreatic acinar cell and in a Chinese hamster ovary (CHO)-CCKR cell line (1, 2). Although CCK binding leads to phosphorylation of serine residues within the third intracellular loop of the receptor in both cell types, there are clear differences in the time course of phosphorylation, in the balance of action of kinases and a receptor phosphatase, and in a few of the distinct sites phosphorylated. In this work, we have directly assessed the inositol 1,4,5- triphosphate responses to CCK and desensitization of these responses in both cells. CHO cell lines expressing receptor mutants with protein kinase C consensus sites modified were also studied. CCK-stimulated inositol 1,4,5- triphosphate responses in both cells expressing wild-type receptors were rapidly and completely desensitized, associated with the onset of receptor phosphorylation. However, despite maintenance of the phosphorylated state of the receptor in the CHO-CCKR cell and its dephosphorylation returning the receptor to its basal state in the acinar cell, desensitization continued to be present in both. Mutagenesis of Ser260 and Ser264 to alanines individually reduced receptor phosphorylation by approximately 50%, whereas the dual mutant completely eliminated agonist-stimulated phosphorylation. Because other sites of phosphorylation were still intact in this construct, this raises the possibility of hierarchical phosphorylation with these two sites key in making other sites accessible to kinases. Constructs modifying Ser264 delayed the onset of desensitization, whereas all constructs proceeded to achieve complete desensitization by 10 min. Receptor internalization occurred independent of its phosphorylation state in the CHO cell lines, explaining the desensitization observed. In the acinar cell in which the receptor remains on the cell surface after agonist occupation, we postulate that receptor insulation achieves similar uncoupling from G protein association as is achieved by receptor phosphorylation early after agonist occupation.

AB - Receptor phosphorylation has been implicated in desensitization responses to some agonist ligands, in which receptors may become uncoupled from G proteins and move into cellular compartments inaccessible to hydrophilic ligands. Understanding of the linkage between these processes, however, has come largely from recombinant receptor-bearing cell systems with consensus sites of kinase action mutagenized. We recently established methodology permitting direct assessment of sites of phosphorylation of the cholecystokinin receptor (CCKR) in its native milieu in the pancreatic acinar cell and in a Chinese hamster ovary (CHO)-CCKR cell line (1, 2). Although CCK binding leads to phosphorylation of serine residues within the third intracellular loop of the receptor in both cell types, there are clear differences in the time course of phosphorylation, in the balance of action of kinases and a receptor phosphatase, and in a few of the distinct sites phosphorylated. In this work, we have directly assessed the inositol 1,4,5- triphosphate responses to CCK and desensitization of these responses in both cells. CHO cell lines expressing receptor mutants with protein kinase C consensus sites modified were also studied. CCK-stimulated inositol 1,4,5- triphosphate responses in both cells expressing wild-type receptors were rapidly and completely desensitized, associated with the onset of receptor phosphorylation. However, despite maintenance of the phosphorylated state of the receptor in the CHO-CCKR cell and its dephosphorylation returning the receptor to its basal state in the acinar cell, desensitization continued to be present in both. Mutagenesis of Ser260 and Ser264 to alanines individually reduced receptor phosphorylation by approximately 50%, whereas the dual mutant completely eliminated agonist-stimulated phosphorylation. Because other sites of phosphorylation were still intact in this construct, this raises the possibility of hierarchical phosphorylation with these two sites key in making other sites accessible to kinases. Constructs modifying Ser264 delayed the onset of desensitization, whereas all constructs proceeded to achieve complete desensitization by 10 min. Receptor internalization occurred independent of its phosphorylation state in the CHO cell lines, explaining the desensitization observed. In the acinar cell in which the receptor remains on the cell surface after agonist occupation, we postulate that receptor insulation achieves similar uncoupling from G protein association as is achieved by receptor phosphorylation early after agonist occupation.

UR - http://www.scopus.com/inward/record.url?scp=0031016848&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0031016848&partnerID=8YFLogxK

M3 - Article

C2 - 9203622

AN - SCOPUS:0031016848

VL - 51

SP - 185

EP - 192

JO - Molecular Pharmacology

JF - Molecular Pharmacology

SN - 0026-895X

IS - 2

ER -