TY - JOUR
T1 - Renal Function Parameters and Serum Sodium Enhance Prediction of Wait-List Outcomes in Pediatric Liver Transplantation
AU - Thalji, Leanne
AU - Thalji, Nassir M.
AU - Heimbach, Julie K.
AU - Ibrahim, Samar H.
AU - Kamath, Patrick S.
AU - Hanson, Andrew
AU - Schulte, Phillip J.
AU - Haile, Dawit T.
AU - Kor, Daryl J.
N1 - Funding Information:
The authors would like to acknowledge the contributions of the following individuals for their assistance with the data acquisition necessary for this study: Kristin C. Mara, Department of Health Sciences Research, Mayo Clinic (Rochester, MN), and Jane Fasbender and Sandra Schwantz of the William J. von Liebig Center for Transplantation and Clinical Regeneration.
Publisher Copyright:
© 2020 by the American Association for the Study of Liver Diseases.
PY - 2021/3
Y1 - 2021/3
N2 - Background and Aims: Reliance on exception points to prioritize children for liver transplantation (LT) stems from concerns that the Pediatric End-Stage Liver Disease (PELD) score underestimates mortality. Renal dysfunction and serum sodium disturbances are negative prognosticators in adult LT candidates and various pediatric populations, but are not accounted for in PELD. We retrospectively evaluated the effect of these parameters in predicting 90-day wait-list death/deterioration among pediatric patients (<12 years) listed for isolated LT in the United States between February 2002 and June 2018. Approach and Results: Among 4,765 patients, 2,303 (49.3%) were transplanted, and 231 (4.8%) died or deteriorated beyond transplantability within 90 days of listing. Estimated glomerular filtration rate (eGFR) (hazard ratio [HR] 1.09 per 5-unit decrease, 95% confidence interval [CI] 1.06-1.10) and dialysis (HR 7.24, 95% CI 3.57-14.66) were univariate predictors of 90-day death/deterioration (P < 0.001). The long-term benefit of LT persisted in patients with renal dysfunction, with LT as a time-dependent covariate conferring a 2.4-fold and 17-fold improvement in late survival among those with mild and moderate-to-severe dysfunction, respectively. Adjusting for PELD, sodium was a significant nonlinear predictor of outcome, with 90-day death/deterioration risk increased at both extremes of sodium (HR 1.20 per 1-unit decrease below 137 mmol/L, 95% CI 1.16-1.23; HR per 1-unit increase above 137 mmol/L 1.13, 95% CI 1.10-1.17, P < 0.001). A multivariable model incorporating PELD, eGFR, dialysis, and sodium demonstrated improved performance and superior calibration in predicting wait-list outcomes relative to the PELD score. Conclusions: Listing eGFR, dialysis, and serum sodium are potent, independent predictors of 90-day death/deterioration in pediatric LT candidates, capturing risk not accounted for by PELD. Incorporation of these variables into organ allocation systems may highlight patient subsets with previously underappreciated risk, augment ability of PELD to prioritize patients for transplantation, and ultimately mitigate reliance on nonstandard exceptions.
AB - Background and Aims: Reliance on exception points to prioritize children for liver transplantation (LT) stems from concerns that the Pediatric End-Stage Liver Disease (PELD) score underestimates mortality. Renal dysfunction and serum sodium disturbances are negative prognosticators in adult LT candidates and various pediatric populations, but are not accounted for in PELD. We retrospectively evaluated the effect of these parameters in predicting 90-day wait-list death/deterioration among pediatric patients (<12 years) listed for isolated LT in the United States between February 2002 and June 2018. Approach and Results: Among 4,765 patients, 2,303 (49.3%) were transplanted, and 231 (4.8%) died or deteriorated beyond transplantability within 90 days of listing. Estimated glomerular filtration rate (eGFR) (hazard ratio [HR] 1.09 per 5-unit decrease, 95% confidence interval [CI] 1.06-1.10) and dialysis (HR 7.24, 95% CI 3.57-14.66) were univariate predictors of 90-day death/deterioration (P < 0.001). The long-term benefit of LT persisted in patients with renal dysfunction, with LT as a time-dependent covariate conferring a 2.4-fold and 17-fold improvement in late survival among those with mild and moderate-to-severe dysfunction, respectively. Adjusting for PELD, sodium was a significant nonlinear predictor of outcome, with 90-day death/deterioration risk increased at both extremes of sodium (HR 1.20 per 1-unit decrease below 137 mmol/L, 95% CI 1.16-1.23; HR per 1-unit increase above 137 mmol/L 1.13, 95% CI 1.10-1.17, P < 0.001). A multivariable model incorporating PELD, eGFR, dialysis, and sodium demonstrated improved performance and superior calibration in predicting wait-list outcomes relative to the PELD score. Conclusions: Listing eGFR, dialysis, and serum sodium are potent, independent predictors of 90-day death/deterioration in pediatric LT candidates, capturing risk not accounted for by PELD. Incorporation of these variables into organ allocation systems may highlight patient subsets with previously underappreciated risk, augment ability of PELD to prioritize patients for transplantation, and ultimately mitigate reliance on nonstandard exceptions.
UR - http://www.scopus.com/inward/record.url?scp=85102689968&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85102689968&partnerID=8YFLogxK
U2 - 10.1002/hep.31397
DO - 10.1002/hep.31397
M3 - Article
C2 - 32485002
AN - SCOPUS:85102689968
SN - 0270-9139
VL - 73
SP - 1117
EP - 1131
JO - Hepatology
JF - Hepatology
IS - 3
ER -