Rates of Brain Atrophy across Disease Stages in Familial Frontotemporal Dementia Associated with MAPT, GRN, and C9orf72 Pathogenic Variants

Adam M. Staffaroni, Sheng Yang M. Goh, Yann Cobigo, Elise Ong, Suzee E. Lee, Kaitlin B. Casaletto, Amy Wolf, Leah K. Forsberg, Nupur Ghoshal, Neill R. Graff-Radford, Murray Grossman, Hilary W. Heuer, Ging Yuek R. Hsiung, Kejal Kantarci, David S. Knopman, Walter K. Kremers, Ian R. Mackenzie, Bruce L. Miller, Otto Pedraza, Katya RascovskyM. Carmela Tartaglia, Zbigniew K. Wszolek, Joel H. Kramer, John Kornak, Bradley F. Boeve, Adam L. Boxer, Howard J. Rosen

Research output: Contribution to journalArticlepeer-review

Abstract

Importance: Several clinical trials are planned for familial forms of frontotemporal lobar degeneration (f-FTLD). Precise modeling of brain atrophy in f-FTLD could improve the power to detect a treatment effect. Objective: To characterize regions and rates of atrophy in the 3 primary f-FTLD genetic groups (MAPT, GRN, and C9orf72) across all disease stages from asymptomatic to dementia. Design, Setting, and Participants: This investigation was a case-control study of participants enrolled in the Advancing Research and Treatment for Frontotemporal Lobar Degeneration or Longitudinal Evaluation of Familial Frontotemporal Dementia studies. The study took place at 18 North American academic medical centers between January 2009 and September 2018. Participants with f-FTLD (n = 100) with a known pathogenic variant (MAPT [n = 28], GRN [n = 33], or C9orf72 [n = 39]) were grouped according to disease stage (ie, Clinical Dementia Rating [CDR] plus National Alzheimer's Coordinating Center [NACC] FTLD module). Included were participants with at least 2 structural magnetic resonance images at presymptomatic (CDR + NACC FTLD = 0 [n = 57]), mild or questionable (CDR + NACC FTLD = 0.5 [n = 15]), or symptomatic (CDR + NACC FTLD = ≥1 [n = 28]) disease stages. The control group included family members of known pathogenic variant carriers who did not carry the pathogenic variant (n = 60). Main Outcomes and Measures: This study fitted bayesian linear mixed-effects models in each voxel of the brain to quantify the rate of atrophy in each of the 3 genes, at each of the 3 disease stages, compared with controls. The study also analyzed rates of clinical decline in each of these groups, as measured by the CDR + NACC FTLD box score. Results: The sample included 100 participants with f-FTLD with a known pathogenic variant (mean [SD] age, 50.48 [13.78] years; 53 [53%] female) and 60 family members of known pathogenic variant carriers who did not carry the pathogenic variant (mean [SD] age, 47.51 [12.43] years; 36 [60%] female). MAPT and GRN pathogenic variants were associated with increased rates of volume loss compared with controls at all stages of disease. In MAPT pathogenic variant carriers, statistically significant regions of accelerated volume loss compared with controls were identified in temporal regions bilaterally in the presymptomatic stage, with global spread in the symptomatic stage. For example, mean [SD] rates of atrophy in the left temporal were -231 [47] mm3 per year during the presymptomatic stage, -381 [208] mm3 per year during the mild stage, and -1485 [1025] mm3 per year during the symptomatic stage (P <.05). GRN pathogenic variant carriers generally had minimal increases in atrophy rates between the presymptomatic and mild stages, with rapid increases in atrophy rates in the symptomatic stages. For example, in the right frontal lobes, annualized volume loss was -267 [81] mm3 per year in the presymptomatic stage and -182 [90] mm3 per year in the mild stage, but -1169 [555] mm3 per year in the symptomatic stage. Compared with the other groups, C9orf72 expansion carriers showed minimal increases in rate of volume loss with disease progression. For example, the mean (SD) annualized rates of atrophy in the right frontal lobe in C9orf72 expansion carriers was -272 (118) mm3 per year in presymptomatic stages, -310 (189) mm3 per year in mildly symptomatic stages, and -251 (145) mm3 per year in symptomatic stages. Conclusions and Relevance: These findings are relevant to clinical trial planning and suggest that the mechanism by which C9orf72 pathogenic variants lead to symptoms may be fundamentally different from the mechanisms associated with other pathogenic variants.

Original languageEnglish (US)
Article numbere2022847
JournalJAMA Network Open
Volume3
Issue number10
DOIs
StatePublished - Oct 28 2020

ASJC Scopus subject areas

  • Medicine(all)

Fingerprint Dive into the research topics of 'Rates of Brain Atrophy across Disease Stages in Familial Frontotemporal Dementia Associated with MAPT, GRN, and C9orf72 Pathogenic Variants'. Together they form a unique fingerprint.

Cite this