Production and characterization of separate monoclonal antibodies to human acetylcholinesterase and butylrylcholinesterase

S. Brimijoin, K. P. Mintz, M. C. Alley

Research output: Contribution to journalArticlepeer-review

58 Scopus citations

Abstract

Butyrylcholinesterase purified from human plasma and acetylcholinesterase purified from human red blood cells were used to immunize separate groups of BALB/c mice. A solid-phase immunoadsorbance assay was developed to screen and characterize antibodies specific for the cholinesterases. Immunized spleen cells were fused with a non-immunoglobulin-secreting myeloma cell line (FO). After two subcultures at limiting dilution, several clones secreting antibodies to acetylcholinesterase or butyrylcholinesterase were obtained. Selected clones were expanded as ascites tumors in immunosuppressed BALB/c mice. All tested immunoglobulins consisted of kappa light chains and either G1 or G(2b) heavy chains. Two-dimensional gel electrophoresis confirmed the monoclonal nature of each isolated antibody. None of the antibodies to acetylcholinesterase cross-reacted with butyrylcholinesterase, and vice versa. All tested antibodies exhibited high avidity for human enzyme, independent of the tissue source (apparent dissociation constants: 1-3 nM for acetylcholinesterase antibodies; 2-13 nM for butyrylcholinesterase antibodies). Treatment of enzymes with monoclonal antibodies increased the sedimentation coefficients (from 6.5 S to 12 S for acetylcholinesterase, from 11 S to 18 S or 20 S for butylrylcholinesterase). All of the monoclonal antibodies displayed marked species specificity. Several antibodies reacted only with human enzyme; others reacted with enzyme from nonhuman primates as well. A few of the butyrylcholinesterase antibodies cross-reacted weakly with enzyme from dog, cat, and horse, but none reacted with the enzyme from rat, guinea pig, and chicken. One acetylcholinesterase antibody cross-reacted with acetylcholinesterase of rabbit and guinea pig. The avidity, species selectivity, and other properties of these antibody reagents will be useful in future studies on the regulation and disposition of cholinesterases.

Original languageEnglish (US)
Pages (from-to)513-520
Number of pages8
JournalMolecular pharmacology
Volume24
Issue number3
StatePublished - 1983

ASJC Scopus subject areas

  • Molecular Medicine
  • Pharmacology

Fingerprint

Dive into the research topics of 'Production and characterization of separate monoclonal antibodies to human acetylcholinesterase and butylrylcholinesterase'. Together they form a unique fingerprint.

Cite this