New endoscopic techniques to identify colorectal dysplasia

Michael B. Wallace, Jacques Van Dam

Research output: Contribution to journalArticle

Abstract

Distinguishing dysplastic (adenomatous) from nondysplastic (hyperplastic) polyps is not possible using standard endoscopic techniques. Routine endoscopy is also unable to identify regions of flat dysplasia in ulcerative colitis or Barrett's esophagus. Endoscopists depend on histology to characterize these lesions, which introduces additional costs and risks and invariably delays patient management. A new series of technologies, collectively termed optical biopsy, are capable of immediate, noninvasive diagnosis of dysplasia. We shall review the 2 most promising of these technologies, namely laser-induced fluorescence (LIF) and light-scattering spectroscopy (LSS). The principle of LIF is that dysplastic cells emit light (fluoresce) differently than cells that are not dysplastic. Dysplastic cells may contain compounds capable of causing fluorescence (fluorophores), which are different from those found in nondysplastic cells or compounds which are similar but found in an abnormal concentration compared to nondysplastic cells. When a laser or filtered light is used to illuminate the intestinal mucosa, dysplastic cells give off a characteristic fluorescence that can be detected with fiber optic probes or, more recently, standard charged-coupled device (video) chips in the endoscope. Previous studies have evaluated light sources and specific wavelengths of light that optimally cause fluorescence. In addition, the fluorescence characteristics of gastrointestinal tissue are currently being assessed to determine which are best capable of distinguishing dysplastic from nondysplastic lesions. Overall, LIF is very accurate, with sensitivity and specificity of greater than 90%. However, it is less accurate in identifying low-grade, nonpolypoid dysplasia. LSS is based in part on the principle that small particles can be characterized by the way in which they scatter light. When used to study the superficial mucosa of patients with Barrett's esophagus, light-scattering spectroscopy can determine the size and number of nuclei. Because dysplastic cells develop abnormally large nuclei with a larger number of nuclei per area ("crowding") than nondysplastic tissue, LSS may be able to aid in the endoscopic detection of dysplasia. Recent studies in patients with Barrett's esophagus have shown that LSS is capable of accurately detecting both low-grade and high-grade dysplasia. Importantly, because these techniques use objective parameters such as nuclear size and number, they may be less subject to the interobserver variation seen in histological interpretation of dysplasia. New techniques such as LIF and LSS have the potential to provide immediate, noninvasive tissue diagnoses that can accurately distinguish nondysplastic from dysplastic polyps and may be useful for localizing areas of nonpolypoid dysplasia in patients with ulcerative colitis or Barrett's esophagus.

Original languageEnglish (US)
Pages (from-to)23-29
Number of pages7
JournalTechniques in Gastrointestinal Endoscopy
Volume2
Issue number1
DOIs
StatePublished - Jan 2000
Externally publishedYes

Fingerprint

Light
Fluorescence
Spectrum Analysis
Barrett Esophagus
Lasers
Polyps
Ulcerative Colitis
Technology
Observer Variation
Endoscopes
Intestinal Mucosa
Endoscopy
Histology
Mucous Membrane
Biopsy
Costs and Cost Analysis
Sensitivity and Specificity
Equipment and Supplies

ASJC Scopus subject areas

  • Gastroenterology
  • Radiology Nuclear Medicine and imaging

Cite this

New endoscopic techniques to identify colorectal dysplasia. / Wallace, Michael B.; Van Dam, Jacques.

In: Techniques in Gastrointestinal Endoscopy, Vol. 2, No. 1, 01.2000, p. 23-29.

Research output: Contribution to journalArticle

Wallace, Michael B. ; Van Dam, Jacques. / New endoscopic techniques to identify colorectal dysplasia. In: Techniques in Gastrointestinal Endoscopy. 2000 ; Vol. 2, No. 1. pp. 23-29.
@article{b222fa0030e14fa1861019dadf33b3e8,
title = "New endoscopic techniques to identify colorectal dysplasia",
abstract = "Distinguishing dysplastic (adenomatous) from nondysplastic (hyperplastic) polyps is not possible using standard endoscopic techniques. Routine endoscopy is also unable to identify regions of flat dysplasia in ulcerative colitis or Barrett's esophagus. Endoscopists depend on histology to characterize these lesions, which introduces additional costs and risks and invariably delays patient management. A new series of technologies, collectively termed optical biopsy, are capable of immediate, noninvasive diagnosis of dysplasia. We shall review the 2 most promising of these technologies, namely laser-induced fluorescence (LIF) and light-scattering spectroscopy (LSS). The principle of LIF is that dysplastic cells emit light (fluoresce) differently than cells that are not dysplastic. Dysplastic cells may contain compounds capable of causing fluorescence (fluorophores), which are different from those found in nondysplastic cells or compounds which are similar but found in an abnormal concentration compared to nondysplastic cells. When a laser or filtered light is used to illuminate the intestinal mucosa, dysplastic cells give off a characteristic fluorescence that can be detected with fiber optic probes or, more recently, standard charged-coupled device (video) chips in the endoscope. Previous studies have evaluated light sources and specific wavelengths of light that optimally cause fluorescence. In addition, the fluorescence characteristics of gastrointestinal tissue are currently being assessed to determine which are best capable of distinguishing dysplastic from nondysplastic lesions. Overall, LIF is very accurate, with sensitivity and specificity of greater than 90{\%}. However, it is less accurate in identifying low-grade, nonpolypoid dysplasia. LSS is based in part on the principle that small particles can be characterized by the way in which they scatter light. When used to study the superficial mucosa of patients with Barrett's esophagus, light-scattering spectroscopy can determine the size and number of nuclei. Because dysplastic cells develop abnormally large nuclei with a larger number of nuclei per area ({"}crowding{"}) than nondysplastic tissue, LSS may be able to aid in the endoscopic detection of dysplasia. Recent studies in patients with Barrett's esophagus have shown that LSS is capable of accurately detecting both low-grade and high-grade dysplasia. Importantly, because these techniques use objective parameters such as nuclear size and number, they may be less subject to the interobserver variation seen in histological interpretation of dysplasia. New techniques such as LIF and LSS have the potential to provide immediate, noninvasive tissue diagnoses that can accurately distinguish nondysplastic from dysplastic polyps and may be useful for localizing areas of nonpolypoid dysplasia in patients with ulcerative colitis or Barrett's esophagus.",
author = "Wallace, {Michael B.} and {Van Dam}, Jacques",
year = "2000",
month = "1",
doi = "10.1016/S1096-2883(00)80038-8",
language = "English (US)",
volume = "2",
pages = "23--29",
journal = "Techniques in Gastrointestinal Endoscopy",
issn = "1096-2883",
publisher = "W.B. Saunders Ltd",
number = "1",

}

TY - JOUR

T1 - New endoscopic techniques to identify colorectal dysplasia

AU - Wallace, Michael B.

AU - Van Dam, Jacques

PY - 2000/1

Y1 - 2000/1

N2 - Distinguishing dysplastic (adenomatous) from nondysplastic (hyperplastic) polyps is not possible using standard endoscopic techniques. Routine endoscopy is also unable to identify regions of flat dysplasia in ulcerative colitis or Barrett's esophagus. Endoscopists depend on histology to characterize these lesions, which introduces additional costs and risks and invariably delays patient management. A new series of technologies, collectively termed optical biopsy, are capable of immediate, noninvasive diagnosis of dysplasia. We shall review the 2 most promising of these technologies, namely laser-induced fluorescence (LIF) and light-scattering spectroscopy (LSS). The principle of LIF is that dysplastic cells emit light (fluoresce) differently than cells that are not dysplastic. Dysplastic cells may contain compounds capable of causing fluorescence (fluorophores), which are different from those found in nondysplastic cells or compounds which are similar but found in an abnormal concentration compared to nondysplastic cells. When a laser or filtered light is used to illuminate the intestinal mucosa, dysplastic cells give off a characteristic fluorescence that can be detected with fiber optic probes or, more recently, standard charged-coupled device (video) chips in the endoscope. Previous studies have evaluated light sources and specific wavelengths of light that optimally cause fluorescence. In addition, the fluorescence characteristics of gastrointestinal tissue are currently being assessed to determine which are best capable of distinguishing dysplastic from nondysplastic lesions. Overall, LIF is very accurate, with sensitivity and specificity of greater than 90%. However, it is less accurate in identifying low-grade, nonpolypoid dysplasia. LSS is based in part on the principle that small particles can be characterized by the way in which they scatter light. When used to study the superficial mucosa of patients with Barrett's esophagus, light-scattering spectroscopy can determine the size and number of nuclei. Because dysplastic cells develop abnormally large nuclei with a larger number of nuclei per area ("crowding") than nondysplastic tissue, LSS may be able to aid in the endoscopic detection of dysplasia. Recent studies in patients with Barrett's esophagus have shown that LSS is capable of accurately detecting both low-grade and high-grade dysplasia. Importantly, because these techniques use objective parameters such as nuclear size and number, they may be less subject to the interobserver variation seen in histological interpretation of dysplasia. New techniques such as LIF and LSS have the potential to provide immediate, noninvasive tissue diagnoses that can accurately distinguish nondysplastic from dysplastic polyps and may be useful for localizing areas of nonpolypoid dysplasia in patients with ulcerative colitis or Barrett's esophagus.

AB - Distinguishing dysplastic (adenomatous) from nondysplastic (hyperplastic) polyps is not possible using standard endoscopic techniques. Routine endoscopy is also unable to identify regions of flat dysplasia in ulcerative colitis or Barrett's esophagus. Endoscopists depend on histology to characterize these lesions, which introduces additional costs and risks and invariably delays patient management. A new series of technologies, collectively termed optical biopsy, are capable of immediate, noninvasive diagnosis of dysplasia. We shall review the 2 most promising of these technologies, namely laser-induced fluorescence (LIF) and light-scattering spectroscopy (LSS). The principle of LIF is that dysplastic cells emit light (fluoresce) differently than cells that are not dysplastic. Dysplastic cells may contain compounds capable of causing fluorescence (fluorophores), which are different from those found in nondysplastic cells or compounds which are similar but found in an abnormal concentration compared to nondysplastic cells. When a laser or filtered light is used to illuminate the intestinal mucosa, dysplastic cells give off a characteristic fluorescence that can be detected with fiber optic probes or, more recently, standard charged-coupled device (video) chips in the endoscope. Previous studies have evaluated light sources and specific wavelengths of light that optimally cause fluorescence. In addition, the fluorescence characteristics of gastrointestinal tissue are currently being assessed to determine which are best capable of distinguishing dysplastic from nondysplastic lesions. Overall, LIF is very accurate, with sensitivity and specificity of greater than 90%. However, it is less accurate in identifying low-grade, nonpolypoid dysplasia. LSS is based in part on the principle that small particles can be characterized by the way in which they scatter light. When used to study the superficial mucosa of patients with Barrett's esophagus, light-scattering spectroscopy can determine the size and number of nuclei. Because dysplastic cells develop abnormally large nuclei with a larger number of nuclei per area ("crowding") than nondysplastic tissue, LSS may be able to aid in the endoscopic detection of dysplasia. Recent studies in patients with Barrett's esophagus have shown that LSS is capable of accurately detecting both low-grade and high-grade dysplasia. Importantly, because these techniques use objective parameters such as nuclear size and number, they may be less subject to the interobserver variation seen in histological interpretation of dysplasia. New techniques such as LIF and LSS have the potential to provide immediate, noninvasive tissue diagnoses that can accurately distinguish nondysplastic from dysplastic polyps and may be useful for localizing areas of nonpolypoid dysplasia in patients with ulcerative colitis or Barrett's esophagus.

UR - http://www.scopus.com/inward/record.url?scp=77950233764&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=77950233764&partnerID=8YFLogxK

U2 - 10.1016/S1096-2883(00)80038-8

DO - 10.1016/S1096-2883(00)80038-8

M3 - Article

AN - SCOPUS:77950233764

VL - 2

SP - 23

EP - 29

JO - Techniques in Gastrointestinal Endoscopy

JF - Techniques in Gastrointestinal Endoscopy

SN - 1096-2883

IS - 1

ER -