Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS

Hong Joo Kim, Nam Chul Kim, Yong Dong Wang, Emily A. Scarborough, Jennifer Moore, Zamia Diaz, Kyle S. MacLea, Brian Freibaum, Songqing Li, Amandine Molliex, Anderson P. Kanagaraj, Robert Carter, Kevin B. Boylan, Aleksandra M. Wojtas, Rosa Rademakers, Jack L. Pinkus, Steven A. Greenberg, John Q. Trojanowski, Bryan J. Traynor, Bradley N. SmithSimon Topp, Athina Soragia Gkazi, Jack Miller, Christopher E. Shaw, Michael Kottlors, Janbernd Kirschner, Alan Pestronk, Yun R. Li, Alice Flynn Ford, Aaron D. Gitler, Michael Benatar, Oliver D. King, Virginia E. Kimonis, Eric D. Ross, Conrad C. Weihl, James Shorter, J. Paul Taylor

Research output: Contribution to journalArticlepeer-review

810 Scopus citations

Abstract

Algorithms designed to identify canonical yeast prions predict that around 250 human proteins, including several RNA-binding proteins associated with neurodegenerative disease, harbour a distinctive prion-like domain (PrLD) enriched in uncharged polar amino acids and glycine. PrLDs in RNA-binding proteins are essential for the assembly of ribonucleoprotein granules. However, the interplay between human PrLD function and disease is not understood. Here we define pathogenic mutations in PrLDs of heterogeneous nuclear ribonucleoproteins (hnRNPs) A2B1 and A1 in families with inherited degeneration affecting muscle, brain, motor neuron and bone, and in one case of familial amyotrophic lateral sclerosis. Wild-type hnRNPA2 (the most abundant isoform of hnRNPA2B1) and hnRNPA1 show an intrinsic tendency to assemble into self-seeding fibrils, which is exacerbated by the disease mutations. Indeed, the pathogenic mutations strengthen a 'steric zipper' motif in the PrLD, which accelerates the formation of self-seeding fibrils that cross-seed polymerization of wild-type hnRNP. Notably, the disease mutations promote excess incorporation of hnRNPA2 and hnRNPA1 into stress granules and drive the formation of cytoplasmic inclusions in animal models that recapitulate the human pathology. Thus, dysregulated polymerization caused by a potent mutant steric zipper motif in a PrLD can initiate degenerative disease. Related proteins with PrLDs should therefore be considered candidates for initiating and perhaps propagating proteinopathies of muscle, brain, motor neuron and bone.

Original languageEnglish (US)
Pages (from-to)467-473
Number of pages7
JournalNature
Volume495
Issue number7442
DOIs
StatePublished - Mar 28 2013

ASJC Scopus subject areas

  • General

Fingerprint

Dive into the research topics of 'Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS'. Together they form a unique fingerprint.

Cite this