Mortality Prediction in Cardiac Intensive Care Unit Patients: A Systematic Review of Existing and Artificial Intelligence Augmented Approaches

Nikita Rafie, Jacob C. Jentzer, Peter A. Noseworthy, Anthony H. Kashou

Research output: Contribution to journalReview articlepeer-review

Abstract

The medical complexity and high acuity of patients in the cardiac intensive care unit make for a unique patient population with high morbidity and mortality. While there are many tools for predictions of mortality in other settings, there is a lack of robust mortality prediction tools for cardiac intensive care unit patients. The ongoing advances in artificial intelligence and machine learning also pose a potential asset to the advancement of mortality prediction. Artificial intelligence algorithms have been developed for application of electrocardiogram interpretation with promising accuracy and clinical application. Additionally, artificial intelligence algorithms applied to electrocardiogram interpretation have been developed to predict various variables such as structural heart disease, left ventricular systolic dysfunction, and atrial fibrillation. These variables can be used and applied to new mortality prediction models that are dynamic with the changes in the patient's clinical course and may lead to more accurate and reliable mortality prediction. The application of artificial intelligence to mortality prediction will fill the gaps left by current mortality prediction tools.

Original languageEnglish (US)
Article number876007
JournalFrontiers in Artificial Intelligence
Volume5
DOIs
StatePublished - May 31 2022

Keywords

  • artificial intelligence
  • cardiac intensive care unit
  • ECG interpretation
  • electrocardiogram
  • machine learning
  • mortality prediction

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Mortality Prediction in Cardiac Intensive Care Unit Patients: A Systematic Review of Existing and Artificial Intelligence Augmented Approaches'. Together they form a unique fingerprint.

Cite this