Metalloproteinase PAPP - A regulation of IGF-1 contributes to polycystic kidney disease pathogenesis

Sonu Kashyap, Kyaw Zaw Hein, Claudia C.S. Chini, Jorgo Lika, Gina M. Warner, Laurie K. Bale, Vicente E. Torres, Peter C. Harris, Claus Oxvig, Cheryl A. Conover, Eduardo N. Chini

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Autosomal dominant polycystic kidney disease (ADPKD) is the most common genetic cause of end-stage renal disease (ESRD). The treatment options for ADPKD are limited. We observed an upregulation in several IGF-1 pathway genes in the kidney of Pkd1RC/RC mice, a model of ADPKD. Pregnancy-associated plasma protein A (PAPP-A), a metalloproteinase that cleaves inhibitory IGF binding proteins (IGFBPs), increasing the local bioactivity of IGF-1, was highly induced in the kidney of ADPKD mice. PAPP-A levels were high in cystic fluid and kidneys of humans with ADPKD. Our studies further showed that PAPP-A transcription in ADPKD was mainly regulated through the cAMP/CREB/CBP/p300 pathway. Pappa deficiency effectively inhibited the development of cysts in the Pkd1RC/RC mice. The role of PAPP-A in cystic disease appears to be regulation of the IGF-1 pathway and cellular proliferation in the kidney. Finally, preclinical studies demonstrated that treatment with a monoclonal antibody that blocks the proteolytic activity of PAPP-A against IGFBP4 ameliorated ADPKD cystic disease in vivo in Pkd1RC/RC mice and ex vivo in embryonic kidneys. These data indicated that the PAPP-A/IGF-1 pathway plays an important role in the growth and expansion of cysts in ADPKD. Our findings introduce a therapeutic strategy for ADPKD that involves the inhibition of PAPP-A.

Original languageEnglish (US)
Article numbere135700
JournalJCI Insight
Volume5
Issue number4
DOIs
StatePublished - Feb 27 2020

ASJC Scopus subject areas

  • Medicine(all)

Fingerprint Dive into the research topics of 'Metalloproteinase PAPP - A regulation of IGF-1 contributes to polycystic kidney disease pathogenesis'. Together they form a unique fingerprint.

Cite this