Mapping of critical events in disease progression through binary classification: Application to amyotrophic lateral sclerosis

the Pooled Resource Open-Access ALS Clinical Trials Consortium

Research output: Contribution to journalArticlepeer-review

Abstract

Background: The progression of many degenerative diseases is tracked periodically using scales evaluating functionality in daily activities. Although estimating the timing of critical events (i.e., disease tollgates) during degenerative disease progression is desirable, the necessary data may not be readily available in scale records. Further, analysis of disease progression poses data challenges, such as censoring and misclassification errors, which need to be addressed to provide meaningful research findings and inform patients. Methods: We developed a novel binary classification approach to map scale scores into disease tollgates to describe disease progression leveraging standard/modified Kaplan-Meier analyses. The approach is demonstrated by estimating progression pathways in amyotrophic lateral sclerosis (ALS). Tollgate-based ALS Staging System (TASS) specifies the critical events (i.e., tollgates) in ALS progression. We first developed a binary classification predicting whether each TASS tollgate was passed given the itemized ALSFRS-R scores using 514 ALS patients’ data from Mayo Clinic-Rochester. Then, we utilized the binary classification to translate/map the ALSFRS-R data of 3,264 patients from the PRO-ACT database into TASS. We derived the time trajectories of ALS progression through tollgates from the augmented PRO-ACT data using Kaplan-Meier analyses. The effects of misclassification errors, condition-dependent dropouts, and censored data in trajectory estimations were evaluated with Interval Censored Kaplan Meier Analysis and Multistate Model for Panel Data. Results: The approach using Mayo Clinic data accurately estimated tollgate-passed states of patients given their itemized ALSFRS-R scores (AUCs > 0.90). The tollgate time trajectories derived from the augmented PRO-ACT dataset provide valuable insights; we predicted that the majority of the ALS patients would have modified arm function (67%) and require assistive devices for walking (53%) by the second year after ALS onset. By the third year, most (74%) ALS patients would occasionally use a wheelchair, while 48% of the ALS patients would be wheelchair-dependent by the fourth year. Assistive speech devices and feeding tubes were needed in 49% and 30% of the patients by the third year after ALS onset, respectively. The onset body region alters some tollgate passage time estimations by 1–2 years. Conclusions: The estimated tollgate-based time trajectories inform patients and clinicians about prospective assistive device needs and life changes. More research is needed to personalize these estimations according to prognostic factors. Further, the approach can be leveraged in the progression of other diseases.

Original languageEnglish (US)
Article number103895
JournalJournal of Biomedical Informatics
Volume123
DOIs
StatePublished - Nov 2021

Keywords

  • Amyotrophic lateral sclerosis
  • Binary classification
  • Disease progression
  • Kaplan-Meier analysis
  • Prognosis
  • Timing of critical events

ASJC Scopus subject areas

  • Computer Science Applications
  • Health Informatics

Fingerprint

Dive into the research topics of 'Mapping of critical events in disease progression through binary classification: Application to amyotrophic lateral sclerosis'. Together they form a unique fingerprint.

Cite this