Local tomography II

Adel Faridani, David V. Finch, Erik L. Ritman, Kennan T. Smith

Research output: Contribution to journalArticlepeer-review

115 Scopus citations

Abstract

Standard, or global, tomography involves the reconstruction of a function f from line integrals. Local tomography, in this paper, involves the reconstruction of a related function, Lf = α(Λf + μΛ-1f), where Λ is the square root of the positive Laplacian, -Δ. This article is a sequel to the article "Local Tomography" [SIAM J. Appl. Math., 52 (1992), pp. 459-484, 1193-1198] by Faridani, Hitman, and Smith. The principal new results are (1) good bounds for Λf and Λ-1f outside the support of f, particularly when f has 0 moments up to some order; (2) identification and reduction of global effects in local tomography, i.e., identification and reduction of the dependence of Lf (x) on the values of f at points at an intermediate distance from x; (3) an algorithm for computing approximate density jumps from Λf when f is a linear combination of characteristic functions and a smooth background. Several examples are given: some from real x-ray data, some from mathematical phantoms. They include three-dimensional 7-micron resolution reconstructions from microtomographic scans.

Original languageEnglish (US)
Pages (from-to)1095-1127
Number of pages33
JournalSIAM Journal on Applied Mathematics
Volume57
Issue number4
DOIs
StatePublished - Aug 1997

Keywords

  • Local
  • Microscopic tomography
  • Three-dimensional computed tomography
  • Tomography
  • Two-dimensional computed tomography

ASJC Scopus subject areas

  • Applied Mathematics

Fingerprint Dive into the research topics of 'Local tomography II'. Together they form a unique fingerprint.

Cite this