Leaky gut: Mechanisms, measurement and clinical implications in humans

Research output: Contribution to journalReview article

4 Citations (Scopus)

Abstract

The objectives of this review on 'leaky gut' for clinicians are to discuss the components of the intestinal barrier, the diverse measurements of intestinal permeability, their perturbation in non-inflammatory 'stressed states' and the impact of treatment with dietary factors. Information on 'healthy' or 'leaky' gut in the public domain requires confirmation before endorsing dietary exclusions, replacement with non-irritating foods (such as fermented foods) or use of supplements to repair the damage. The intestinal barrier includes surface mucus, epithelial layer and immune defences. Epithelial permeability results from increased paracellular transport, apoptosis or transcellular permeability. Barrier function can be tested in vivo using orally administered probe molecules or in vitro using mucosal biopsies from humans, exposing the colonic mucosa from rats or mice or cell layers to extracts of colonic mucosa or stool from human patients. Assessment of intestinal barrier requires measurements beyond the epithelial layer. 'Stress' disorders such as endurance exercise, non-steroidal anti-inflammatory drugs administration, pregnancy and surfactants (such as bile acids and dietary factors such as emulsifiers) increase permeability. Dietary factors can reverse intestinal leakiness and mucosal damage in the 'stress' disorders. Whereas inflammatory or ulcerating intestinal diseases result in leaky gut, no such disease can be cured by simply normalising intestinal barrier function. It is still unproven that restoring barrier function can ameliorate clinical manifestations in GI or systemic diseases. Clinicians should be aware of the potential of barrier dysfunction in GI diseases and of the barrier as a target for future therapy.

Original languageEnglish (US)
JournalGut
DOIs
StatePublished - Jan 1 2019

Fingerprint

Permeability
Mucous Membrane
Food
Intestinal Diseases
Public Sector
Mucus
Bile Acids and Salts
Surface-Active Agents
Anti-Inflammatory Agents
Exercise
Apoptosis
Biopsy
Pregnancy
Therapeutics
Pharmaceutical Preparations

Keywords

  • mucus
  • permeability
  • tight junctions

ASJC Scopus subject areas

  • Gastroenterology

Cite this

Leaky gut : Mechanisms, measurement and clinical implications in humans. / Camilleri, Michael.

In: Gut, 01.01.2019.

Research output: Contribution to journalReview article

@article{3f328ad531c34cbf8d65ccdea8be7329,
title = "Leaky gut: Mechanisms, measurement and clinical implications in humans",
abstract = "The objectives of this review on 'leaky gut' for clinicians are to discuss the components of the intestinal barrier, the diverse measurements of intestinal permeability, their perturbation in non-inflammatory 'stressed states' and the impact of treatment with dietary factors. Information on 'healthy' or 'leaky' gut in the public domain requires confirmation before endorsing dietary exclusions, replacement with non-irritating foods (such as fermented foods) or use of supplements to repair the damage. The intestinal barrier includes surface mucus, epithelial layer and immune defences. Epithelial permeability results from increased paracellular transport, apoptosis or transcellular permeability. Barrier function can be tested in vivo using orally administered probe molecules or in vitro using mucosal biopsies from humans, exposing the colonic mucosa from rats or mice or cell layers to extracts of colonic mucosa or stool from human patients. Assessment of intestinal barrier requires measurements beyond the epithelial layer. 'Stress' disorders such as endurance exercise, non-steroidal anti-inflammatory drugs administration, pregnancy and surfactants (such as bile acids and dietary factors such as emulsifiers) increase permeability. Dietary factors can reverse intestinal leakiness and mucosal damage in the 'stress' disorders. Whereas inflammatory or ulcerating intestinal diseases result in leaky gut, no such disease can be cured by simply normalising intestinal barrier function. It is still unproven that restoring barrier function can ameliorate clinical manifestations in GI or systemic diseases. Clinicians should be aware of the potential of barrier dysfunction in GI diseases and of the barrier as a target for future therapy.",
keywords = "mucus, permeability, tight junctions",
author = "Michael Camilleri",
year = "2019",
month = "1",
day = "1",
doi = "10.1136/gutjnl-2019-318427",
language = "English (US)",
journal = "Gut",
issn = "0017-5749",
publisher = "BMJ Publishing Group",

}

TY - JOUR

T1 - Leaky gut

T2 - Mechanisms, measurement and clinical implications in humans

AU - Camilleri, Michael

PY - 2019/1/1

Y1 - 2019/1/1

N2 - The objectives of this review on 'leaky gut' for clinicians are to discuss the components of the intestinal barrier, the diverse measurements of intestinal permeability, their perturbation in non-inflammatory 'stressed states' and the impact of treatment with dietary factors. Information on 'healthy' or 'leaky' gut in the public domain requires confirmation before endorsing dietary exclusions, replacement with non-irritating foods (such as fermented foods) or use of supplements to repair the damage. The intestinal barrier includes surface mucus, epithelial layer and immune defences. Epithelial permeability results from increased paracellular transport, apoptosis or transcellular permeability. Barrier function can be tested in vivo using orally administered probe molecules or in vitro using mucosal biopsies from humans, exposing the colonic mucosa from rats or mice or cell layers to extracts of colonic mucosa or stool from human patients. Assessment of intestinal barrier requires measurements beyond the epithelial layer. 'Stress' disorders such as endurance exercise, non-steroidal anti-inflammatory drugs administration, pregnancy and surfactants (such as bile acids and dietary factors such as emulsifiers) increase permeability. Dietary factors can reverse intestinal leakiness and mucosal damage in the 'stress' disorders. Whereas inflammatory or ulcerating intestinal diseases result in leaky gut, no such disease can be cured by simply normalising intestinal barrier function. It is still unproven that restoring barrier function can ameliorate clinical manifestations in GI or systemic diseases. Clinicians should be aware of the potential of barrier dysfunction in GI diseases and of the barrier as a target for future therapy.

AB - The objectives of this review on 'leaky gut' for clinicians are to discuss the components of the intestinal barrier, the diverse measurements of intestinal permeability, their perturbation in non-inflammatory 'stressed states' and the impact of treatment with dietary factors. Information on 'healthy' or 'leaky' gut in the public domain requires confirmation before endorsing dietary exclusions, replacement with non-irritating foods (such as fermented foods) or use of supplements to repair the damage. The intestinal barrier includes surface mucus, epithelial layer and immune defences. Epithelial permeability results from increased paracellular transport, apoptosis or transcellular permeability. Barrier function can be tested in vivo using orally administered probe molecules or in vitro using mucosal biopsies from humans, exposing the colonic mucosa from rats or mice or cell layers to extracts of colonic mucosa or stool from human patients. Assessment of intestinal barrier requires measurements beyond the epithelial layer. 'Stress' disorders such as endurance exercise, non-steroidal anti-inflammatory drugs administration, pregnancy and surfactants (such as bile acids and dietary factors such as emulsifiers) increase permeability. Dietary factors can reverse intestinal leakiness and mucosal damage in the 'stress' disorders. Whereas inflammatory or ulcerating intestinal diseases result in leaky gut, no such disease can be cured by simply normalising intestinal barrier function. It is still unproven that restoring barrier function can ameliorate clinical manifestations in GI or systemic diseases. Clinicians should be aware of the potential of barrier dysfunction in GI diseases and of the barrier as a target for future therapy.

KW - mucus

KW - permeability

KW - tight junctions

UR - http://www.scopus.com/inward/record.url?scp=85065584059&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85065584059&partnerID=8YFLogxK

U2 - 10.1136/gutjnl-2019-318427

DO - 10.1136/gutjnl-2019-318427

M3 - Review article

C2 - 31076401

AN - SCOPUS:85065584059

JO - Gut

JF - Gut

SN - 0017-5749

ER -