LC-MS/MS for identifying patients with CYP24A1 mutations

Hemamalini Ketha, Rajiv Kumar, Ravinder Jit Singh

Research output: Contribution to journalArticle

27 Citations (Scopus)

Abstract

BACKGROUND: Patients have been described with lossoffunction CYP24A1 (cytochrome P450, family 24, subfamily A, polypeptide 1) mutations that cause a high ratio of 25-hydroxyvitamin D to 24,25-dihydroxyvitamin D [25(OH)D/24,25(OH)2D], increased serum 1,25-dihydroxyvitamin D, and resulting hypercalcemia, hypercalciuria and nephrolithiasis. A 25(OH)D/24,25(OH)2Dratio that can identify patients who are candidates for confirmatory CYP24A1 genetic testing would be valuable. We validated an LC-MS/MS assay for 24,25(OH)2D (D3 and D2) and determined a 25(OH)D/24,25(OH)2D cutoff to identify candidates for confirmatory genetic testing. METHODS: After addition of isotope-labeled internal standard, serum samples were extracted by solid-phase extraction, derivatized with 4-phenyl-1,2,4,-triazoline-3,5-dione, and quantified by LC-MS/MS. We measured 25(OH)D/24,25(OH)2D in 91 healthy patients and 34 patients with clinically suspected CYP24A1-mediated hypercalcemia. RESULTS: The limits of detection and quantification were 0.03 (0.2) and 0.1 (0.24) nmol/L, respectively, for 24,25(OH)2D3, and 0.1 (0.23) and 0.5 (1.16) nmol/L for 24,25(OH)2D2. Intra- and interassay imprecision was 4%-15% across the analytical measurement range of 0.1-25 ng/mL (0.2-60 nmol/L). No interference was observed with 25(OH)D and 1,25(OH)2D. 25(OH)D/24,25(OH)2D of 7-35 was observed in healthy patients, whereas in 2 patients with CYP24A1 mutations, 25(OH)D/24,25(OH)2D was significantly increased (99-467; P <0.001). A 25(OH)D/24,25(OH)2D ratio ≥99 identified patients who were candidates for CYP24A1 genetic testing. CONCLUSIONS: Increased 25(OH)D/24,25(OH)2D supports the diagnosis of reduced CYP24A1 activity due to mutations in CYP24A1. Measurement of 25(OH)D/24,25(OH)2D should be considered a part of the clinical workup in patients with hypercalcemia of otherwise unknown etiology.

Original languageEnglish (US)
Pages (from-to)236-242
Number of pages7
JournalClinical Chemistry
Volume62
Issue number1
DOIs
StatePublished - Jan 1 2016

Fingerprint

Mutation
Hypercalcemia
Genetic Testing
Testing
Dihydroxycholecalciferols
Hypercalciuria
Nephrolithiasis
Vitamin D3 24-Hydroxylase
Solid Phase Extraction
Isotopes
Cytochrome P-450 Enzyme System
Serum
Assays
Limit of Detection
Peptides

ASJC Scopus subject areas

  • Clinical Biochemistry
  • Biochemistry, medical

Cite this

LC-MS/MS for identifying patients with CYP24A1 mutations. / Ketha, Hemamalini; Kumar, Rajiv; Singh, Ravinder Jit.

In: Clinical Chemistry, Vol. 62, No. 1, 01.01.2016, p. 236-242.

Research output: Contribution to journalArticle

@article{9ee09277e79b4dd69d5d0802c0650bd0,
title = "LC-MS/MS for identifying patients with CYP24A1 mutations",
abstract = "BACKGROUND: Patients have been described with lossoffunction CYP24A1 (cytochrome P450, family 24, subfamily A, polypeptide 1) mutations that cause a high ratio of 25-hydroxyvitamin D to 24,25-dihydroxyvitamin D [25(OH)D/24,25(OH)2D], increased serum 1,25-dihydroxyvitamin D, and resulting hypercalcemia, hypercalciuria and nephrolithiasis. A 25(OH)D/24,25(OH)2Dratio that can identify patients who are candidates for confirmatory CYP24A1 genetic testing would be valuable. We validated an LC-MS/MS assay for 24,25(OH)2D (D3 and D2) and determined a 25(OH)D/24,25(OH)2D cutoff to identify candidates for confirmatory genetic testing. METHODS: After addition of isotope-labeled internal standard, serum samples were extracted by solid-phase extraction, derivatized with 4-phenyl-1,2,4,-triazoline-3,5-dione, and quantified by LC-MS/MS. We measured 25(OH)D/24,25(OH)2D in 91 healthy patients and 34 patients with clinically suspected CYP24A1-mediated hypercalcemia. RESULTS: The limits of detection and quantification were 0.03 (0.2) and 0.1 (0.24) nmol/L, respectively, for 24,25(OH)2D3, and 0.1 (0.23) and 0.5 (1.16) nmol/L for 24,25(OH)2D2. Intra- and interassay imprecision was 4{\%}-15{\%} across the analytical measurement range of 0.1-25 ng/mL (0.2-60 nmol/L). No interference was observed with 25(OH)D and 1,25(OH)2D. 25(OH)D/24,25(OH)2D of 7-35 was observed in healthy patients, whereas in 2 patients with CYP24A1 mutations, 25(OH)D/24,25(OH)2D was significantly increased (99-467; P <0.001). A 25(OH)D/24,25(OH)2D ratio ≥99 identified patients who were candidates for CYP24A1 genetic testing. CONCLUSIONS: Increased 25(OH)D/24,25(OH)2D supports the diagnosis of reduced CYP24A1 activity due to mutations in CYP24A1. Measurement of 25(OH)D/24,25(OH)2D should be considered a part of the clinical workup in patients with hypercalcemia of otherwise unknown etiology.",
author = "Hemamalini Ketha and Rajiv Kumar and Singh, {Ravinder Jit}",
year = "2016",
month = "1",
day = "1",
doi = "10.1373/clinchem.2015.244459",
language = "English (US)",
volume = "62",
pages = "236--242",
journal = "Clinical Chemistry",
issn = "0009-9147",
publisher = "American Association for Clinical Chemistry Inc.",
number = "1",

}

TY - JOUR

T1 - LC-MS/MS for identifying patients with CYP24A1 mutations

AU - Ketha, Hemamalini

AU - Kumar, Rajiv

AU - Singh, Ravinder Jit

PY - 2016/1/1

Y1 - 2016/1/1

N2 - BACKGROUND: Patients have been described with lossoffunction CYP24A1 (cytochrome P450, family 24, subfamily A, polypeptide 1) mutations that cause a high ratio of 25-hydroxyvitamin D to 24,25-dihydroxyvitamin D [25(OH)D/24,25(OH)2D], increased serum 1,25-dihydroxyvitamin D, and resulting hypercalcemia, hypercalciuria and nephrolithiasis. A 25(OH)D/24,25(OH)2Dratio that can identify patients who are candidates for confirmatory CYP24A1 genetic testing would be valuable. We validated an LC-MS/MS assay for 24,25(OH)2D (D3 and D2) and determined a 25(OH)D/24,25(OH)2D cutoff to identify candidates for confirmatory genetic testing. METHODS: After addition of isotope-labeled internal standard, serum samples were extracted by solid-phase extraction, derivatized with 4-phenyl-1,2,4,-triazoline-3,5-dione, and quantified by LC-MS/MS. We measured 25(OH)D/24,25(OH)2D in 91 healthy patients and 34 patients with clinically suspected CYP24A1-mediated hypercalcemia. RESULTS: The limits of detection and quantification were 0.03 (0.2) and 0.1 (0.24) nmol/L, respectively, for 24,25(OH)2D3, and 0.1 (0.23) and 0.5 (1.16) nmol/L for 24,25(OH)2D2. Intra- and interassay imprecision was 4%-15% across the analytical measurement range of 0.1-25 ng/mL (0.2-60 nmol/L). No interference was observed with 25(OH)D and 1,25(OH)2D. 25(OH)D/24,25(OH)2D of 7-35 was observed in healthy patients, whereas in 2 patients with CYP24A1 mutations, 25(OH)D/24,25(OH)2D was significantly increased (99-467; P <0.001). A 25(OH)D/24,25(OH)2D ratio ≥99 identified patients who were candidates for CYP24A1 genetic testing. CONCLUSIONS: Increased 25(OH)D/24,25(OH)2D supports the diagnosis of reduced CYP24A1 activity due to mutations in CYP24A1. Measurement of 25(OH)D/24,25(OH)2D should be considered a part of the clinical workup in patients with hypercalcemia of otherwise unknown etiology.

AB - BACKGROUND: Patients have been described with lossoffunction CYP24A1 (cytochrome P450, family 24, subfamily A, polypeptide 1) mutations that cause a high ratio of 25-hydroxyvitamin D to 24,25-dihydroxyvitamin D [25(OH)D/24,25(OH)2D], increased serum 1,25-dihydroxyvitamin D, and resulting hypercalcemia, hypercalciuria and nephrolithiasis. A 25(OH)D/24,25(OH)2Dratio that can identify patients who are candidates for confirmatory CYP24A1 genetic testing would be valuable. We validated an LC-MS/MS assay for 24,25(OH)2D (D3 and D2) and determined a 25(OH)D/24,25(OH)2D cutoff to identify candidates for confirmatory genetic testing. METHODS: After addition of isotope-labeled internal standard, serum samples were extracted by solid-phase extraction, derivatized with 4-phenyl-1,2,4,-triazoline-3,5-dione, and quantified by LC-MS/MS. We measured 25(OH)D/24,25(OH)2D in 91 healthy patients and 34 patients with clinically suspected CYP24A1-mediated hypercalcemia. RESULTS: The limits of detection and quantification were 0.03 (0.2) and 0.1 (0.24) nmol/L, respectively, for 24,25(OH)2D3, and 0.1 (0.23) and 0.5 (1.16) nmol/L for 24,25(OH)2D2. Intra- and interassay imprecision was 4%-15% across the analytical measurement range of 0.1-25 ng/mL (0.2-60 nmol/L). No interference was observed with 25(OH)D and 1,25(OH)2D. 25(OH)D/24,25(OH)2D of 7-35 was observed in healthy patients, whereas in 2 patients with CYP24A1 mutations, 25(OH)D/24,25(OH)2D was significantly increased (99-467; P <0.001). A 25(OH)D/24,25(OH)2D ratio ≥99 identified patients who were candidates for CYP24A1 genetic testing. CONCLUSIONS: Increased 25(OH)D/24,25(OH)2D supports the diagnosis of reduced CYP24A1 activity due to mutations in CYP24A1. Measurement of 25(OH)D/24,25(OH)2D should be considered a part of the clinical workup in patients with hypercalcemia of otherwise unknown etiology.

UR - http://www.scopus.com/inward/record.url?scp=84954468592&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84954468592&partnerID=8YFLogxK

U2 - 10.1373/clinchem.2015.244459

DO - 10.1373/clinchem.2015.244459

M3 - Article

C2 - 26585929

AN - SCOPUS:84954468592

VL - 62

SP - 236

EP - 242

JO - Clinical Chemistry

JF - Clinical Chemistry

SN - 0009-9147

IS - 1

ER -