Isolation and characterization of a mutant liver aldolase in adult hereditary fructose intolerance. Identification of the enzyme variant by radioassay in tissue biopsy specimens

T. M. Cox, M. W. O'Donnell, Michael Camilleri, A. H. Burghes

Research output: Contribution to journalArticle

16 Citations (Scopus)

Abstract

Hereditary fructose intolerance (HFI) is a metabolic disorder caused by enzymic deficiency of aldolase B, a genetically distinct cytosolic isoenzyme expressed exclusively in liver, kidney, and intestine. The molecular basis of this enzyme defect has been investigated in three affected individuals from a non-consanguineous kindred, in whom fructose-1-phosphate aldolase activities in liver or intestinal biopsy samples were reduced to 2-6% of mean control values. To identify a putative enzyme mutant in tissue extracts, aldolase B was purified from human liver by affinity chromatography and monospecific antibodies were prepared from antiserum raised in sheep. Immunodiffusion gels showed a single precipitin line common to pure enzyme and extracts of normal liver and intestine, but no reaction with extracts of brain, muscle, or HFI liver. However, weak positive staining for aldolase in hepatocyte and enterocyte cytosol was demonstrated by indirect immunofluorescence of HFI tissues. This was abolished by pretreatment with pure enzyme protein. Accordingly, a specific radioimmunoassay (detection limit 7.5 ng) was established to quantify immunoreactive aldolase B in human biopsy specimens. Extracts of tissue from affected patients gave 10-25% immunoreactive enzyme in control samples; immunoreactive aldolase in intestinal extracts from four heterozygotes was reduced (to 55%) when compared with seven samples from normal control subjects (P <0.05). In extracts of HFI tissues, there was a sevenfold reduction in apparent absolute specific activity (1.02 vs. 8.82 U/mg) of immunoreactive fructose-1-phosphate aldolase B, but the apparent specific activity in heterozygotes (7.71 U/mg) was only slightly impaired. Displacement radioimmunotitration of aldolase B in liver supernatants showed a significant (P <0.005) decrease in antibody avidity for immunoreactive protein in HFI tissue when compared with the pure enzyme or extract of normal control liver. Immunoaffinity chromatography on antialdolase B-Sepharose facilitated isolation and purification of enzyme from liver biopsy specimens. Active aldolase in normal liver, with substrate activity ratios and Michaelis constant identical to biochemically purified human enzyme, could be recovered from antibody columns. Chromatography on monospecific Fab' antialdolase B enabled pure enzyme protein to be retrieved quantitatively from normal control and HFI liver: direct chemical assay showed 1.88 and 1.15 mg aldolase protein/g of tissue, respectively. This confirmed that the catalytic properties of the HFI aldolase were profoundly impaired with specific activities of fructose-1-phosphate cleavage of 7.21 and 0.07 U/mg, respectively. Radioimmunoassay gave estimates of 7.66 and 1.18 U/mg, respectively. Sodium dodecyl sulfate-polyacrylamide electrophoresis indicated that immunopurified aldolase from HFI liver possessed a single subunit size similar to material from control liver extracts: M(r) 39,100 vs. 37,900 ± 700 (SD) D, respectively. Electrofocusing under denaturing conditions of aldolase isolated in parallel from control and HFI liver revealed the same complement of subunits and, despite qualitative differences in distribution of bands during degradation, no additional charged species. Fructose phosphate aldolase deficiency in hereditary fructose intolerance is attended by the synthesis of an immunoreactive, but functionally and structurally modified enzyme variant that results from a restricted genetic mutation.

Original languageEnglish (US)
Pages (from-to)201-213
Number of pages13
JournalJournal of Clinical Investigation
Volume72
Issue number1
StatePublished - 1983
Externally publishedYes

Fingerprint

Fructose Intolerance
Fructose-Bisphosphate Aldolase
Biopsy
Liver
Enzymes
Liver Extracts
Tissue Extracts
Heterozygote
Intestines
Radioimmunoassay
Chromatography
Proteins
Precipitins
Antibody Affinity
Antibodies
Enterocytes
Immunodiffusion

ASJC Scopus subject areas

  • Medicine(all)

Cite this

@article{cb0df0a6d95841689cc3e5d1be427242,
title = "Isolation and characterization of a mutant liver aldolase in adult hereditary fructose intolerance. Identification of the enzyme variant by radioassay in tissue biopsy specimens",
abstract = "Hereditary fructose intolerance (HFI) is a metabolic disorder caused by enzymic deficiency of aldolase B, a genetically distinct cytosolic isoenzyme expressed exclusively in liver, kidney, and intestine. The molecular basis of this enzyme defect has been investigated in three affected individuals from a non-consanguineous kindred, in whom fructose-1-phosphate aldolase activities in liver or intestinal biopsy samples were reduced to 2-6{\%} of mean control values. To identify a putative enzyme mutant in tissue extracts, aldolase B was purified from human liver by affinity chromatography and monospecific antibodies were prepared from antiserum raised in sheep. Immunodiffusion gels showed a single precipitin line common to pure enzyme and extracts of normal liver and intestine, but no reaction with extracts of brain, muscle, or HFI liver. However, weak positive staining for aldolase in hepatocyte and enterocyte cytosol was demonstrated by indirect immunofluorescence of HFI tissues. This was abolished by pretreatment with pure enzyme protein. Accordingly, a specific radioimmunoassay (detection limit 7.5 ng) was established to quantify immunoreactive aldolase B in human biopsy specimens. Extracts of tissue from affected patients gave 10-25{\%} immunoreactive enzyme in control samples; immunoreactive aldolase in intestinal extracts from four heterozygotes was reduced (to 55{\%}) when compared with seven samples from normal control subjects (P <0.05). In extracts of HFI tissues, there was a sevenfold reduction in apparent absolute specific activity (1.02 vs. 8.82 U/mg) of immunoreactive fructose-1-phosphate aldolase B, but the apparent specific activity in heterozygotes (7.71 U/mg) was only slightly impaired. Displacement radioimmunotitration of aldolase B in liver supernatants showed a significant (P <0.005) decrease in antibody avidity for immunoreactive protein in HFI tissue when compared with the pure enzyme or extract of normal control liver. Immunoaffinity chromatography on antialdolase B-Sepharose facilitated isolation and purification of enzyme from liver biopsy specimens. Active aldolase in normal liver, with substrate activity ratios and Michaelis constant identical to biochemically purified human enzyme, could be recovered from antibody columns. Chromatography on monospecific Fab' antialdolase B enabled pure enzyme protein to be retrieved quantitatively from normal control and HFI liver: direct chemical assay showed 1.88 and 1.15 mg aldolase protein/g of tissue, respectively. This confirmed that the catalytic properties of the HFI aldolase were profoundly impaired with specific activities of fructose-1-phosphate cleavage of 7.21 and 0.07 U/mg, respectively. Radioimmunoassay gave estimates of 7.66 and 1.18 U/mg, respectively. Sodium dodecyl sulfate-polyacrylamide electrophoresis indicated that immunopurified aldolase from HFI liver possessed a single subunit size similar to material from control liver extracts: M(r) 39,100 vs. 37,900 ± 700 (SD) D, respectively. Electrofocusing under denaturing conditions of aldolase isolated in parallel from control and HFI liver revealed the same complement of subunits and, despite qualitative differences in distribution of bands during degradation, no additional charged species. Fructose phosphate aldolase deficiency in hereditary fructose intolerance is attended by the synthesis of an immunoreactive, but functionally and structurally modified enzyme variant that results from a restricted genetic mutation.",
author = "Cox, {T. M.} and O'Donnell, {M. W.} and Michael Camilleri and Burghes, {A. H.}",
year = "1983",
language = "English (US)",
volume = "72",
pages = "201--213",
journal = "Journal of Clinical Investigation",
issn = "0021-9738",
publisher = "The American Society for Clinical Investigation",
number = "1",

}

TY - JOUR

T1 - Isolation and characterization of a mutant liver aldolase in adult hereditary fructose intolerance. Identification of the enzyme variant by radioassay in tissue biopsy specimens

AU - Cox, T. M.

AU - O'Donnell, M. W.

AU - Camilleri, Michael

AU - Burghes, A. H.

PY - 1983

Y1 - 1983

N2 - Hereditary fructose intolerance (HFI) is a metabolic disorder caused by enzymic deficiency of aldolase B, a genetically distinct cytosolic isoenzyme expressed exclusively in liver, kidney, and intestine. The molecular basis of this enzyme defect has been investigated in three affected individuals from a non-consanguineous kindred, in whom fructose-1-phosphate aldolase activities in liver or intestinal biopsy samples were reduced to 2-6% of mean control values. To identify a putative enzyme mutant in tissue extracts, aldolase B was purified from human liver by affinity chromatography and monospecific antibodies were prepared from antiserum raised in sheep. Immunodiffusion gels showed a single precipitin line common to pure enzyme and extracts of normal liver and intestine, but no reaction with extracts of brain, muscle, or HFI liver. However, weak positive staining for aldolase in hepatocyte and enterocyte cytosol was demonstrated by indirect immunofluorescence of HFI tissues. This was abolished by pretreatment with pure enzyme protein. Accordingly, a specific radioimmunoassay (detection limit 7.5 ng) was established to quantify immunoreactive aldolase B in human biopsy specimens. Extracts of tissue from affected patients gave 10-25% immunoreactive enzyme in control samples; immunoreactive aldolase in intestinal extracts from four heterozygotes was reduced (to 55%) when compared with seven samples from normal control subjects (P <0.05). In extracts of HFI tissues, there was a sevenfold reduction in apparent absolute specific activity (1.02 vs. 8.82 U/mg) of immunoreactive fructose-1-phosphate aldolase B, but the apparent specific activity in heterozygotes (7.71 U/mg) was only slightly impaired. Displacement radioimmunotitration of aldolase B in liver supernatants showed a significant (P <0.005) decrease in antibody avidity for immunoreactive protein in HFI tissue when compared with the pure enzyme or extract of normal control liver. Immunoaffinity chromatography on antialdolase B-Sepharose facilitated isolation and purification of enzyme from liver biopsy specimens. Active aldolase in normal liver, with substrate activity ratios and Michaelis constant identical to biochemically purified human enzyme, could be recovered from antibody columns. Chromatography on monospecific Fab' antialdolase B enabled pure enzyme protein to be retrieved quantitatively from normal control and HFI liver: direct chemical assay showed 1.88 and 1.15 mg aldolase protein/g of tissue, respectively. This confirmed that the catalytic properties of the HFI aldolase were profoundly impaired with specific activities of fructose-1-phosphate cleavage of 7.21 and 0.07 U/mg, respectively. Radioimmunoassay gave estimates of 7.66 and 1.18 U/mg, respectively. Sodium dodecyl sulfate-polyacrylamide electrophoresis indicated that immunopurified aldolase from HFI liver possessed a single subunit size similar to material from control liver extracts: M(r) 39,100 vs. 37,900 ± 700 (SD) D, respectively. Electrofocusing under denaturing conditions of aldolase isolated in parallel from control and HFI liver revealed the same complement of subunits and, despite qualitative differences in distribution of bands during degradation, no additional charged species. Fructose phosphate aldolase deficiency in hereditary fructose intolerance is attended by the synthesis of an immunoreactive, but functionally and structurally modified enzyme variant that results from a restricted genetic mutation.

AB - Hereditary fructose intolerance (HFI) is a metabolic disorder caused by enzymic deficiency of aldolase B, a genetically distinct cytosolic isoenzyme expressed exclusively in liver, kidney, and intestine. The molecular basis of this enzyme defect has been investigated in three affected individuals from a non-consanguineous kindred, in whom fructose-1-phosphate aldolase activities in liver or intestinal biopsy samples were reduced to 2-6% of mean control values. To identify a putative enzyme mutant in tissue extracts, aldolase B was purified from human liver by affinity chromatography and monospecific antibodies were prepared from antiserum raised in sheep. Immunodiffusion gels showed a single precipitin line common to pure enzyme and extracts of normal liver and intestine, but no reaction with extracts of brain, muscle, or HFI liver. However, weak positive staining for aldolase in hepatocyte and enterocyte cytosol was demonstrated by indirect immunofluorescence of HFI tissues. This was abolished by pretreatment with pure enzyme protein. Accordingly, a specific radioimmunoassay (detection limit 7.5 ng) was established to quantify immunoreactive aldolase B in human biopsy specimens. Extracts of tissue from affected patients gave 10-25% immunoreactive enzyme in control samples; immunoreactive aldolase in intestinal extracts from four heterozygotes was reduced (to 55%) when compared with seven samples from normal control subjects (P <0.05). In extracts of HFI tissues, there was a sevenfold reduction in apparent absolute specific activity (1.02 vs. 8.82 U/mg) of immunoreactive fructose-1-phosphate aldolase B, but the apparent specific activity in heterozygotes (7.71 U/mg) was only slightly impaired. Displacement radioimmunotitration of aldolase B in liver supernatants showed a significant (P <0.005) decrease in antibody avidity for immunoreactive protein in HFI tissue when compared with the pure enzyme or extract of normal control liver. Immunoaffinity chromatography on antialdolase B-Sepharose facilitated isolation and purification of enzyme from liver biopsy specimens. Active aldolase in normal liver, with substrate activity ratios and Michaelis constant identical to biochemically purified human enzyme, could be recovered from antibody columns. Chromatography on monospecific Fab' antialdolase B enabled pure enzyme protein to be retrieved quantitatively from normal control and HFI liver: direct chemical assay showed 1.88 and 1.15 mg aldolase protein/g of tissue, respectively. This confirmed that the catalytic properties of the HFI aldolase were profoundly impaired with specific activities of fructose-1-phosphate cleavage of 7.21 and 0.07 U/mg, respectively. Radioimmunoassay gave estimates of 7.66 and 1.18 U/mg, respectively. Sodium dodecyl sulfate-polyacrylamide electrophoresis indicated that immunopurified aldolase from HFI liver possessed a single subunit size similar to material from control liver extracts: M(r) 39,100 vs. 37,900 ± 700 (SD) D, respectively. Electrofocusing under denaturing conditions of aldolase isolated in parallel from control and HFI liver revealed the same complement of subunits and, despite qualitative differences in distribution of bands during degradation, no additional charged species. Fructose phosphate aldolase deficiency in hereditary fructose intolerance is attended by the synthesis of an immunoreactive, but functionally and structurally modified enzyme variant that results from a restricted genetic mutation.

UR - http://www.scopus.com/inward/record.url?scp=0020571658&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0020571658&partnerID=8YFLogxK

M3 - Article

VL - 72

SP - 201

EP - 213

JO - Journal of Clinical Investigation

JF - Journal of Clinical Investigation

SN - 0021-9738

IS - 1

ER -