TY - JOUR
T1 - Inhibition of BMI1 induces autophagy-mediated necroptosis
AU - Dey, Anindya
AU - Mustafi, Soumyajit Banerjee
AU - Saha, Sounik
AU - Kumar Dhar Dwivedi, Shailendra
AU - Mukherjee, Priyabrata
AU - Bhattacharya, Resham
N1 - Funding Information:
This study was supported by the National Institutes of Health (NIH) CA 157481 to RB. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Publisher Copyright:
© 2016 Taylor & Francis.
PY - 2016/4/2
Y1 - 2016/4/2
N2 - ABSTRACT: The clonal self-renewal property conferred by BMI1 is instrumental in maintenance of not only normal stem cells but also cancer-initiating cells from several different malignancies that represent a major challenge to chemotherapy. Realizing the immense pathological significance, PTC-209, a small molecule inhibitor of BMI1 transcription has recently been described. While targeting BMI1 in various systems significantly decreases clonal growth, the mechanisms differ, are context-dependent, and somewhat unclear. We report here that genetic or pharmacological inhibition of BMI1 significantly impacts clonal growth without altering CDKN2A/INK4/ARF or CCNG2 and induces autophagy in ovarian cancer (OvCa) cells through ATP depletion. While autophagy can promote survival or induce cell death, targeting BMI1 engages the PINK1-PARK2-dependent mitochondrial pathway and induces a novel mode of nonapoptotic, necroptosis-mediated cell death. In OvCa, necroptosis is potentiated by activation of the RIPK1-RIPK3 complex that phosphorylates its downstream substrate, MLKL. Importantly, genetic or pharmacological inhibitors of autophagy or RIPK3 rescue clonal growth in BMI1 depleted cells. Thus, we have established a novel molecular link between BMI1, clonal growth, autophagy and necroptosis. In chemoresistant OvCa where apoptotic pathways are frequently impaired, necroptotic cell death modalities provide an important alternate strategy that leverage overexpression of BMI1.
AB - ABSTRACT: The clonal self-renewal property conferred by BMI1 is instrumental in maintenance of not only normal stem cells but also cancer-initiating cells from several different malignancies that represent a major challenge to chemotherapy. Realizing the immense pathological significance, PTC-209, a small molecule inhibitor of BMI1 transcription has recently been described. While targeting BMI1 in various systems significantly decreases clonal growth, the mechanisms differ, are context-dependent, and somewhat unclear. We report here that genetic or pharmacological inhibition of BMI1 significantly impacts clonal growth without altering CDKN2A/INK4/ARF or CCNG2 and induces autophagy in ovarian cancer (OvCa) cells through ATP depletion. While autophagy can promote survival or induce cell death, targeting BMI1 engages the PINK1-PARK2-dependent mitochondrial pathway and induces a novel mode of nonapoptotic, necroptosis-mediated cell death. In OvCa, necroptosis is potentiated by activation of the RIPK1-RIPK3 complex that phosphorylates its downstream substrate, MLKL. Importantly, genetic or pharmacological inhibitors of autophagy or RIPK3 rescue clonal growth in BMI1 depleted cells. Thus, we have established a novel molecular link between BMI1, clonal growth, autophagy and necroptosis. In chemoresistant OvCa where apoptotic pathways are frequently impaired, necroptotic cell death modalities provide an important alternate strategy that leverage overexpression of BMI1.
KW - BMI1
KW - PTC-209
KW - autophagy
KW - necroptosis
KW - ovarian cancer
UR - http://www.scopus.com/inward/record.url?scp=84964417430&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84964417430&partnerID=8YFLogxK
U2 - 10.1080/15548627.2016.1147670
DO - 10.1080/15548627.2016.1147670
M3 - Article
AN - SCOPUS:84964417430
SN - 1554-8627
VL - 12
SP - 659
EP - 670
JO - Autophagy
JF - Autophagy
IS - 4
ER -