Experimental evaluation of fiber-interspaced antiscatter grids for large patient imaging with digital x-ray systems

Kenneth A. Fetterly, Beth A. Schueler

Research output: Contribution to journalArticle

37 Citations (Scopus)

Abstract

Radiographic imaging of large patients is compromised by x-ray scatter. Optimization of digital x-ray imaging systems used for projection radiography requires the use of the best possible antiscatter grid. The performance of antiscatter grids used in conjunction with digital x-ray imaging systems can be characterized through measurement of the signal-to-noise ratio (SNR) improvement factor (KSNR). The SNR improvement factor of several linear, focused antiscatter grids was determined from measurements of the fundamental primary and scatter transmission fraction measurements of the grids as well as the inherent scatter-to-primary ratio (SPR) of the x-ray beam and scatter phantom. The inherent SPR and scatter transmission fraction was measured using a graduated lead beam stop method. The KSNR of eight grids with line rates (N) in the range 40 to 80 cm-1 and ratios (r) in the range 8:1 to 15:1 was measured. All of the grids had fiber interspace material and carbon-fiber covers. The scatter phantom used was Solid Water® with thickness 10 to 50 cm, and a 30 × 30 cm2 field of view was used. All measurements were acquired using a 104 kVp x-ray beam. The SPR of the non-grid imaging condition ranged from 2.55 for the 10 cm phantom to 25.9 for the 50 cm phantom. The scatter transmission fractions ranged from a low of 0.083 for the N50 r15 grid to a high of 0.22 for the N40 r8 grid and the primary transmission fractions ranged from a low of 0.69 for the N80 r15 grid to 0.76 for the N40 r8 grid. The SNR improvement factors ranged from 1.2 for the 10 cm phantom and N40 r8 grid to 2.09 for the 50 cm phantom and the best performing N50 r15, N44 r15 and N40 r14 grids.

Original languageEnglish (US)
Article number010
Pages (from-to)4863-4880
Number of pages18
JournalPhysics in Medicine and Biology
Volume52
Issue number16
DOIs
StatePublished - Aug 21 2007

Fingerprint

grids
X-Rays
Imaging techniques
Signal-To-Noise Ratio
X rays
fibers
Fibers
evaluation
Signal to noise ratio
x rays
Imaging systems
Radiography
signal to noise ratios
Carbon fibers
Lead
Water
beam leads
radiography
carbon fibers
field of view

ASJC Scopus subject areas

  • Biomedical Engineering
  • Physics and Astronomy (miscellaneous)
  • Radiology Nuclear Medicine and imaging
  • Radiological and Ultrasound Technology

Cite this

Experimental evaluation of fiber-interspaced antiscatter grids for large patient imaging with digital x-ray systems. / Fetterly, Kenneth A.; Schueler, Beth A.

In: Physics in Medicine and Biology, Vol. 52, No. 16, 010, 21.08.2007, p. 4863-4880.

Research output: Contribution to journalArticle

@article{d5b34a4b130248bc9408ffb58cb13017,
title = "Experimental evaluation of fiber-interspaced antiscatter grids for large patient imaging with digital x-ray systems",
abstract = "Radiographic imaging of large patients is compromised by x-ray scatter. Optimization of digital x-ray imaging systems used for projection radiography requires the use of the best possible antiscatter grid. The performance of antiscatter grids used in conjunction with digital x-ray imaging systems can be characterized through measurement of the signal-to-noise ratio (SNR) improvement factor (KSNR). The SNR improvement factor of several linear, focused antiscatter grids was determined from measurements of the fundamental primary and scatter transmission fraction measurements of the grids as well as the inherent scatter-to-primary ratio (SPR) of the x-ray beam and scatter phantom. The inherent SPR and scatter transmission fraction was measured using a graduated lead beam stop method. The KSNR of eight grids with line rates (N) in the range 40 to 80 cm-1 and ratios (r) in the range 8:1 to 15:1 was measured. All of the grids had fiber interspace material and carbon-fiber covers. The scatter phantom used was Solid Water{\circledR} with thickness 10 to 50 cm, and a 30 × 30 cm2 field of view was used. All measurements were acquired using a 104 kVp x-ray beam. The SPR of the non-grid imaging condition ranged from 2.55 for the 10 cm phantom to 25.9 for the 50 cm phantom. The scatter transmission fractions ranged from a low of 0.083 for the N50 r15 grid to a high of 0.22 for the N40 r8 grid and the primary transmission fractions ranged from a low of 0.69 for the N80 r15 grid to 0.76 for the N40 r8 grid. The SNR improvement factors ranged from 1.2 for the 10 cm phantom and N40 r8 grid to 2.09 for the 50 cm phantom and the best performing N50 r15, N44 r15 and N40 r14 grids.",
author = "Fetterly, {Kenneth A.} and Schueler, {Beth A.}",
year = "2007",
month = "8",
day = "21",
doi = "10.1088/0031-9155/52/16/010",
language = "English (US)",
volume = "52",
pages = "4863--4880",
journal = "Physics in Medicine and Biology",
issn = "0031-9155",
publisher = "IOP Publishing Ltd.",
number = "16",

}

TY - JOUR

T1 - Experimental evaluation of fiber-interspaced antiscatter grids for large patient imaging with digital x-ray systems

AU - Fetterly, Kenneth A.

AU - Schueler, Beth A.

PY - 2007/8/21

Y1 - 2007/8/21

N2 - Radiographic imaging of large patients is compromised by x-ray scatter. Optimization of digital x-ray imaging systems used for projection radiography requires the use of the best possible antiscatter grid. The performance of antiscatter grids used in conjunction with digital x-ray imaging systems can be characterized through measurement of the signal-to-noise ratio (SNR) improvement factor (KSNR). The SNR improvement factor of several linear, focused antiscatter grids was determined from measurements of the fundamental primary and scatter transmission fraction measurements of the grids as well as the inherent scatter-to-primary ratio (SPR) of the x-ray beam and scatter phantom. The inherent SPR and scatter transmission fraction was measured using a graduated lead beam stop method. The KSNR of eight grids with line rates (N) in the range 40 to 80 cm-1 and ratios (r) in the range 8:1 to 15:1 was measured. All of the grids had fiber interspace material and carbon-fiber covers. The scatter phantom used was Solid Water® with thickness 10 to 50 cm, and a 30 × 30 cm2 field of view was used. All measurements were acquired using a 104 kVp x-ray beam. The SPR of the non-grid imaging condition ranged from 2.55 for the 10 cm phantom to 25.9 for the 50 cm phantom. The scatter transmission fractions ranged from a low of 0.083 for the N50 r15 grid to a high of 0.22 for the N40 r8 grid and the primary transmission fractions ranged from a low of 0.69 for the N80 r15 grid to 0.76 for the N40 r8 grid. The SNR improvement factors ranged from 1.2 for the 10 cm phantom and N40 r8 grid to 2.09 for the 50 cm phantom and the best performing N50 r15, N44 r15 and N40 r14 grids.

AB - Radiographic imaging of large patients is compromised by x-ray scatter. Optimization of digital x-ray imaging systems used for projection radiography requires the use of the best possible antiscatter grid. The performance of antiscatter grids used in conjunction with digital x-ray imaging systems can be characterized through measurement of the signal-to-noise ratio (SNR) improvement factor (KSNR). The SNR improvement factor of several linear, focused antiscatter grids was determined from measurements of the fundamental primary and scatter transmission fraction measurements of the grids as well as the inherent scatter-to-primary ratio (SPR) of the x-ray beam and scatter phantom. The inherent SPR and scatter transmission fraction was measured using a graduated lead beam stop method. The KSNR of eight grids with line rates (N) in the range 40 to 80 cm-1 and ratios (r) in the range 8:1 to 15:1 was measured. All of the grids had fiber interspace material and carbon-fiber covers. The scatter phantom used was Solid Water® with thickness 10 to 50 cm, and a 30 × 30 cm2 field of view was used. All measurements were acquired using a 104 kVp x-ray beam. The SPR of the non-grid imaging condition ranged from 2.55 for the 10 cm phantom to 25.9 for the 50 cm phantom. The scatter transmission fractions ranged from a low of 0.083 for the N50 r15 grid to a high of 0.22 for the N40 r8 grid and the primary transmission fractions ranged from a low of 0.69 for the N80 r15 grid to 0.76 for the N40 r8 grid. The SNR improvement factors ranged from 1.2 for the 10 cm phantom and N40 r8 grid to 2.09 for the 50 cm phantom and the best performing N50 r15, N44 r15 and N40 r14 grids.

UR - http://www.scopus.com/inward/record.url?scp=34547741158&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=34547741158&partnerID=8YFLogxK

U2 - 10.1088/0031-9155/52/16/010

DO - 10.1088/0031-9155/52/16/010

M3 - Article

C2 - 17671340

AN - SCOPUS:34547741158

VL - 52

SP - 4863

EP - 4880

JO - Physics in Medicine and Biology

JF - Physics in Medicine and Biology

SN - 0031-9155

IS - 16

M1 - 010

ER -