TY - JOUR
T1 - Deletion mutation in the putative third intracellular loop of the rat neurotensin receptor abolishes polyphosphoinositide hydrolysis but not cyclic AMP formation in CHO-K1 cells
AU - Yamada, Misa
AU - Yamada, Mitsuhiko
AU - Watson, Michael A.
AU - Richelson, Elliott
PY - 1994/9
Y1 - 1994/9
N2 - The tridecapeptide neurotensin is a putative neurotransmitter in the central nervous system. Previously, we showed that the rat neurotensin receptor expressed in CHO-K1 cells mediates polyphosphoinositide hydrolysis and cAMP formation. To further investigate these neurotensin receptor- mediated signal transduction systems, we constructed three deletion mutations in the putative third intracellular loop of this receptor and transfected these mutated genes into CHO-K1 cells. The equilibrium dissociation constants for specific [3H]neurotensin binding to these mutants were not different from that for the wild-type receptor. However, one mutant, which lacked 27 amino acids (amino acids 270-296), did not stimulate polyphosphoinositide hydrolysis, whereas it retained its ability to stimulate cAMP formation. In addition, as found for the wild-type receptor, sequestration occurred with this mutant. We demonstrated here that the putative third intracellular loop of this receptor plays a role in coupling to certain G proteins that induce polyphosphoinositide hydrolysis but not in coupling to cAMP formation or in ligand binding. The two different signal transduction systems may be induced by different G proteins that couple at different sites of the neurotensin receptor protein in CHO-K1 cells. Furthermore, our data show that neurotensin receptor sequestration is independent of agonist-induced polyphosphoinositide hydrolysis.
AB - The tridecapeptide neurotensin is a putative neurotransmitter in the central nervous system. Previously, we showed that the rat neurotensin receptor expressed in CHO-K1 cells mediates polyphosphoinositide hydrolysis and cAMP formation. To further investigate these neurotensin receptor- mediated signal transduction systems, we constructed three deletion mutations in the putative third intracellular loop of this receptor and transfected these mutated genes into CHO-K1 cells. The equilibrium dissociation constants for specific [3H]neurotensin binding to these mutants were not different from that for the wild-type receptor. However, one mutant, which lacked 27 amino acids (amino acids 270-296), did not stimulate polyphosphoinositide hydrolysis, whereas it retained its ability to stimulate cAMP formation. In addition, as found for the wild-type receptor, sequestration occurred with this mutant. We demonstrated here that the putative third intracellular loop of this receptor plays a role in coupling to certain G proteins that induce polyphosphoinositide hydrolysis but not in coupling to cAMP formation or in ligand binding. The two different signal transduction systems may be induced by different G proteins that couple at different sites of the neurotensin receptor protein in CHO-K1 cells. Furthermore, our data show that neurotensin receptor sequestration is independent of agonist-induced polyphosphoinositide hydrolysis.
UR - http://www.scopus.com/inward/record.url?scp=0027968559&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0027968559&partnerID=8YFLogxK
M3 - Article
C2 - 7935327
AN - SCOPUS:0027968559
SN - 0026-895X
VL - 46
SP - 470
EP - 476
JO - Molecular Pharmacology
JF - Molecular Pharmacology
IS - 3
ER -