Comprehensive simulation on morphological and mechanical properties of trigger finger – A cadaveric model

Yu Shiuan Cheng, Hsiao Feng Chieh, Chien Ju Lin, Li Chieh Kuo, Kai Nan An, Fong Chin Su

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Trigger finger has long been a common disorder in hand orthopedics. To clarify the unknown causative factors regarding the disease, numerous experiments were done on human cadavers, including tendon forces, tendon moment arm, mechanical properties of the pulley, gliding resistance, etc. However, most of these studies were conducted on normal fingers. As the etiology of trigger finger is still controversial on whether it is an outcome of tendon nodule or pulley scarring, in this study, a trigger finger model was built combining both the nodule created by silicone gel injection and pulley constriction by external compression. Indentation and gliding resistance tests were performed on cadaveric specimens to verify the model. Results showed that after silicone gel injection into the tendon, a significant increase in thickness was found. In addition, no significant difference was found in the toe region compressive modulus of the tendon after injection. Moreover, maximum, drop of gliding resistance and work of extension were all found to be significantly larger as the severity of triggering increased. Our results indicated we have developed a feasible cadaver model simulating trigger finger nodule which could be utilized for further experiments to elucidate other causative factors and biomechanical features of trigger finger in the future.

Original languageEnglish (US)
JournalJournal of Biomechanics
DOIs
StateAccepted/In press - Jan 1 2018
Externally publishedYes

Keywords

  • Gliding resistance
  • Human cadaveric model
  • Mechanical property
  • Trigger finger

ASJC Scopus subject areas

  • Biophysics
  • Orthopedics and Sports Medicine
  • Biomedical Engineering
  • Rehabilitation

Fingerprint Dive into the research topics of 'Comprehensive simulation on morphological and mechanical properties of trigger finger – A cadaveric model'. Together they form a unique fingerprint.

Cite this