Complementary use of x-ray dark-field and attenuation computed tomography in quantifying pulmonary fibrosis in a mouse model

Brandon J. Nelson, Shuai Leng, Thomas Koenig, Cynthia H. McCollough

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

X-ray dark-field measured on laboratory sources with large focal spots and detector apertures is sensitive to intra-pixel phase gradients abundant in the lungs due to its hierarchical structure of subdividing airways terminating in thin-walled alveoli. This work leverages this sensitivity to exploit complementary information from x-ray dark-field and attenuation computed tomography (CT) images to improve quantification of morphology in pulmonary fibrosis. Specifically, a dark-field enhanced attenuation technique is developed to restore edges and small features in the attenuation image lost to blurring by appropriately scaling and subtracting the dark-field image. An intratracheally treated bleomycin mouse model of pulmonary fibrosis was used to evaluate the impact of the proposed dark-field enhanced attenuation technique on quantifying fibrosis extent. The mouse model was fixated ex vivo to be imaged with a Talbot-Lau grating interferometer micro-CT to generate x-ray dark field and attenuation volumes of 60 µm voxels. Then the specimen was imaged with a reference micro-CT scanner at 5 µm voxel resolution to get a ground truth approximation of local structure. The volumes were co-registered for visual and pixelwise comparisons. Qualitative image comparisons were used to assess visual sharpness while Bland-Altman plots were used to assess agreement with the reference scan at quantifying fibrosis in terms of tissue area fraction measured in 80 randomly sampled nonoverlapping 2 mm square patches. Visual comparisons demonstrated enhanced sharpness and retention of small lung structures while Bland-Altman analysis revealed an improved agreement ratio of 0.544 compared to 0.374 in the original attenuation image with a reduction in variance. These results demonstrate that dark-field and attenuation images can be used together to improve resolution of small structures and aid in quantification of pulmonary fibrosis in a mouse model.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2022
Subtitle of host publicationBiomedical Applications in Molecular, Structural, and Functional Imaging
EditorsBarjor S. Gimi, Andrzej Krol
PublisherSPIE
ISBN (Electronic)9781510649477
DOIs
StatePublished - 2022
EventMedical Imaging 2022: Biomedical Applications in Molecular, Structural, and Functional Imaging - Virtual, Online
Duration: Mar 21 2022Mar 27 2022

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume12036
ISSN (Print)1605-7422

Conference

ConferenceMedical Imaging 2022: Biomedical Applications in Molecular, Structural, and Functional Imaging
CityVirtual, Online
Period3/21/223/27/22

Keywords

  • bleomycin
  • computed tomography
  • dark field
  • pulmonary fibrosis

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics
  • Biomaterials
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'Complementary use of x-ray dark-field and attenuation computed tomography in quantifying pulmonary fibrosis in a mouse model'. Together they form a unique fingerprint.

Cite this