Comb-push ultrasound shear elastography (CUSE) with various ultrasound push beams

Research output: Contribution to journalArticle

43 Citations (Scopus)

Abstract

Comb-push ultrasound shear elastography (CUSE) has recently been shown to be a fast and accurate 2-D elasticity imaging technique that can provide a full field-of-view (FOV) shear wave speed map with only one rapid data acquisition. The initial version of CUSE was termed U-CUSE because unfocused ultrasound push beams were used. In this paper, we present two new versions of CUSE - focused CUSE (F-CUSE) and marching CUSE (M-CUSE), which use focused ultrasound push beams to improve acoustic radiation force penetration and produce stronger shear waves in deep tissues (e.g., kidney and liver). F-CUSE divides transducer elements into several subgroups which transmit multiple focused ultrasound beams simultaneously. M-CUSE uses more elements for each focused push beam and laterally marches the push beams. Both F-CUSE and M-CUSE can generate comb-shaped shear wave fields that have shear wave motion at each imaging pixel location so that a full FOV 2-D shear wave speed map can be reconstructed with only one data acquisition. Homogeneous phantom experiments showed that U-CUSE, F-CUSE, and M-CUSE can all produce smooth shear wave speed maps with accurate shear wave speed estimates. An inclusion phantom experiment showed that all CUSE methods could provide good contrast between the inclusion and background with sharp boundaries while F-CUSE and M-CUSE require shorter push durations to achieve shear wave speed maps with comparable SNR to U-CUSE. A more challenging inclusion phantom experiment with a very stiff and deep inclusion shows that better shear wave penetration could be gained by using F-CUSE and M-CUSE. Finally, a shallow inclusion experiment showed that good preservations of inclusion shapes could be achieved by both U-CUSE and F-CUSE in the near field. Safety measurements showed that all safety parameters are below FDA regulatory limits for all CUSE methods. These promising results suggest that, using various push beams, CUSE is capable of reconstructing a 2-D full FOV shear elasticity map using only one push-detection data acquisition in a wide range of depths for soft tissue elasticity imaging.

Original languageEnglish (US)
Article number6497690
Pages (from-to)1435-1447
Number of pages13
JournalIEEE Transactions on Medical Imaging
Volume32
Issue number8
DOIs
StatePublished - 2013

Fingerprint

Elasticity Imaging Techniques
Comb and Wattles
Ultrasonics
Shear waves
Elasticity
Data acquisition
Imaging techniques
Experiments
Safety
Tissue
Transducers
Acoustics

Keywords

  • Acoustic radiation force
  • comb-push
  • comb-push ultrasound shear elastography (CUSE)
  • focused ultrasound beam
  • shear wave
  • ultrasound elastography
  • unfocused ultrasound beam

ASJC Scopus subject areas

  • Electrical and Electronic Engineering
  • Computer Science Applications
  • Radiological and Ultrasound Technology
  • Software

Cite this

@article{ee213996ab84401db5a89c089e1f04b8,
title = "Comb-push ultrasound shear elastography (CUSE) with various ultrasound push beams",
abstract = "Comb-push ultrasound shear elastography (CUSE) has recently been shown to be a fast and accurate 2-D elasticity imaging technique that can provide a full field-of-view (FOV) shear wave speed map with only one rapid data acquisition. The initial version of CUSE was termed U-CUSE because unfocused ultrasound push beams were used. In this paper, we present two new versions of CUSE - focused CUSE (F-CUSE) and marching CUSE (M-CUSE), which use focused ultrasound push beams to improve acoustic radiation force penetration and produce stronger shear waves in deep tissues (e.g., kidney and liver). F-CUSE divides transducer elements into several subgroups which transmit multiple focused ultrasound beams simultaneously. M-CUSE uses more elements for each focused push beam and laterally marches the push beams. Both F-CUSE and M-CUSE can generate comb-shaped shear wave fields that have shear wave motion at each imaging pixel location so that a full FOV 2-D shear wave speed map can be reconstructed with only one data acquisition. Homogeneous phantom experiments showed that U-CUSE, F-CUSE, and M-CUSE can all produce smooth shear wave speed maps with accurate shear wave speed estimates. An inclusion phantom experiment showed that all CUSE methods could provide good contrast between the inclusion and background with sharp boundaries while F-CUSE and M-CUSE require shorter push durations to achieve shear wave speed maps with comparable SNR to U-CUSE. A more challenging inclusion phantom experiment with a very stiff and deep inclusion shows that better shear wave penetration could be gained by using F-CUSE and M-CUSE. Finally, a shallow inclusion experiment showed that good preservations of inclusion shapes could be achieved by both U-CUSE and F-CUSE in the near field. Safety measurements showed that all safety parameters are below FDA regulatory limits for all CUSE methods. These promising results suggest that, using various push beams, CUSE is capable of reconstructing a 2-D full FOV shear elasticity map using only one push-detection data acquisition in a wide range of depths for soft tissue elasticity imaging.",
keywords = "Acoustic radiation force, comb-push, comb-push ultrasound shear elastography (CUSE), focused ultrasound beam, shear wave, ultrasound elastography, unfocused ultrasound beam",
author = "Pengfei Song and Urban, {Matthew W} and Armando Manduca and Heng Zhao and Greenleaf, {James F} and Chen, {Shigao D}",
year = "2013",
doi = "10.1109/TMI.2013.2257831",
language = "English (US)",
volume = "32",
pages = "1435--1447",
journal = "IEEE Transactions on Medical Imaging",
issn = "0278-0062",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
number = "8",

}

TY - JOUR

T1 - Comb-push ultrasound shear elastography (CUSE) with various ultrasound push beams

AU - Song, Pengfei

AU - Urban, Matthew W

AU - Manduca, Armando

AU - Zhao, Heng

AU - Greenleaf, James F

AU - Chen, Shigao D

PY - 2013

Y1 - 2013

N2 - Comb-push ultrasound shear elastography (CUSE) has recently been shown to be a fast and accurate 2-D elasticity imaging technique that can provide a full field-of-view (FOV) shear wave speed map with only one rapid data acquisition. The initial version of CUSE was termed U-CUSE because unfocused ultrasound push beams were used. In this paper, we present two new versions of CUSE - focused CUSE (F-CUSE) and marching CUSE (M-CUSE), which use focused ultrasound push beams to improve acoustic radiation force penetration and produce stronger shear waves in deep tissues (e.g., kidney and liver). F-CUSE divides transducer elements into several subgroups which transmit multiple focused ultrasound beams simultaneously. M-CUSE uses more elements for each focused push beam and laterally marches the push beams. Both F-CUSE and M-CUSE can generate comb-shaped shear wave fields that have shear wave motion at each imaging pixel location so that a full FOV 2-D shear wave speed map can be reconstructed with only one data acquisition. Homogeneous phantom experiments showed that U-CUSE, F-CUSE, and M-CUSE can all produce smooth shear wave speed maps with accurate shear wave speed estimates. An inclusion phantom experiment showed that all CUSE methods could provide good contrast between the inclusion and background with sharp boundaries while F-CUSE and M-CUSE require shorter push durations to achieve shear wave speed maps with comparable SNR to U-CUSE. A more challenging inclusion phantom experiment with a very stiff and deep inclusion shows that better shear wave penetration could be gained by using F-CUSE and M-CUSE. Finally, a shallow inclusion experiment showed that good preservations of inclusion shapes could be achieved by both U-CUSE and F-CUSE in the near field. Safety measurements showed that all safety parameters are below FDA regulatory limits for all CUSE methods. These promising results suggest that, using various push beams, CUSE is capable of reconstructing a 2-D full FOV shear elasticity map using only one push-detection data acquisition in a wide range of depths for soft tissue elasticity imaging.

AB - Comb-push ultrasound shear elastography (CUSE) has recently been shown to be a fast and accurate 2-D elasticity imaging technique that can provide a full field-of-view (FOV) shear wave speed map with only one rapid data acquisition. The initial version of CUSE was termed U-CUSE because unfocused ultrasound push beams were used. In this paper, we present two new versions of CUSE - focused CUSE (F-CUSE) and marching CUSE (M-CUSE), which use focused ultrasound push beams to improve acoustic radiation force penetration and produce stronger shear waves in deep tissues (e.g., kidney and liver). F-CUSE divides transducer elements into several subgroups which transmit multiple focused ultrasound beams simultaneously. M-CUSE uses more elements for each focused push beam and laterally marches the push beams. Both F-CUSE and M-CUSE can generate comb-shaped shear wave fields that have shear wave motion at each imaging pixel location so that a full FOV 2-D shear wave speed map can be reconstructed with only one data acquisition. Homogeneous phantom experiments showed that U-CUSE, F-CUSE, and M-CUSE can all produce smooth shear wave speed maps with accurate shear wave speed estimates. An inclusion phantom experiment showed that all CUSE methods could provide good contrast between the inclusion and background with sharp boundaries while F-CUSE and M-CUSE require shorter push durations to achieve shear wave speed maps with comparable SNR to U-CUSE. A more challenging inclusion phantom experiment with a very stiff and deep inclusion shows that better shear wave penetration could be gained by using F-CUSE and M-CUSE. Finally, a shallow inclusion experiment showed that good preservations of inclusion shapes could be achieved by both U-CUSE and F-CUSE in the near field. Safety measurements showed that all safety parameters are below FDA regulatory limits for all CUSE methods. These promising results suggest that, using various push beams, CUSE is capable of reconstructing a 2-D full FOV shear elasticity map using only one push-detection data acquisition in a wide range of depths for soft tissue elasticity imaging.

KW - Acoustic radiation force

KW - comb-push

KW - comb-push ultrasound shear elastography (CUSE)

KW - focused ultrasound beam

KW - shear wave

KW - ultrasound elastography

KW - unfocused ultrasound beam

UR - http://www.scopus.com/inward/record.url?scp=84881436478&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84881436478&partnerID=8YFLogxK

U2 - 10.1109/TMI.2013.2257831

DO - 10.1109/TMI.2013.2257831

M3 - Article

VL - 32

SP - 1435

EP - 1447

JO - IEEE Transactions on Medical Imaging

JF - IEEE Transactions on Medical Imaging

SN - 0278-0062

IS - 8

M1 - 6497690

ER -