Cellular Inhibitor of Apoptosis (cIAP)-mediated ubiquitination of Phosphofurin Acidic Cluster Sorting protein 2 (PACS-2) negatively regulates Tumor necrosis factor-Related Apoptosis-Inducing Ligand (TRAIL) cytotoxicity

Maria Eugenia Guicciardi, Nathan W. Werneburg, Steven F. Bronk, Adrian Franke, Hideo Yagita, Gary Thomas, Gregory James Gores

Research output: Contribution to journalArticle

15 Citations (Scopus)

Abstract

Lysosomal membrane permeabilization is an essential step in TRAIL-induced apoptosis of liver cancer cell lines. TRAIL-induced lysosomal membrane permeabilization is mediated by the multifunctional sorting protein PACS-2 and repressed by the E3 ligases cIAP-1 and cIAP-2. Despite the opposing roles for PACS-2 and cIAPs in TRAIL-induced apoptosis, an interaction between these proteins has yet to be examined. Herein, we report that cIAP-1 and cIAP-2 confer TRAIL resistance to hepatobiliary cancer cell lines by reducing PACS-2 levels. Under basal conditions, PACS-2 underwent K48-linked polyubiquitination, resulting in PACS-2 proteasomal degradation. Biochemical assays showed cIAP-1 and cIAP-2 interacted with PACS-2 in vitro and co-immunoprecipitation studies demonstrated that the two cIAPs bound PACS-2 in vivo. More importantly, both cIAP-1 and cIAP-2 directly mediated PACS-2 ubiquitination in a cell-free assay. Single c-Iap-1 or c-Iap-2 gene knock-outs in mouse hepatocytes did not lead to PACS-2 accumulation. However, deletion of both cIAP-1 and cIAP-2 reduced PACS-2 ubiquitination, which increased PACS-2 levels and sensitized HuH-7 cells to TRAIL-induced lysosomal membrane permeabilization and apoptosis. Correspondingly, deletion of cIAPs sensitized wild-type, but not PACS-2-deficient hepatocarcinoma cells or Pacs-2-/- mouse hepatocytes to TRAIL-induced apoptosis. Together, these data suggest cIAPs constitutively downregulate PACS-2 by polyubiquitination and proteasomal degradation, thereby restraining TRAIL-induced killing of liver cancer cells.

Original languageEnglish (US)
Article numbere92124
JournalPLoS One
Volume9
Issue number3
DOIs
StatePublished - Mar 14 2014

Fingerprint

protein transport
tumor necrosis factors
Ubiquitination
Protein Transport
Cytotoxicity
Sorting
cytotoxicity
apoptosis
Tumor Necrosis Factor-alpha
Apoptosis
Ligands
Proteins
hepatocytes
liver neoplasms
Liver Neoplasms
Cells
ligands
ubiquitination
Membranes
Liver

ASJC Scopus subject areas

  • Agricultural and Biological Sciences(all)
  • Biochemistry, Genetics and Molecular Biology(all)
  • Medicine(all)

Cite this

Cellular Inhibitor of Apoptosis (cIAP)-mediated ubiquitination of Phosphofurin Acidic Cluster Sorting protein 2 (PACS-2) negatively regulates Tumor necrosis factor-Related Apoptosis-Inducing Ligand (TRAIL) cytotoxicity. / Guicciardi, Maria Eugenia; Werneburg, Nathan W.; Bronk, Steven F.; Franke, Adrian; Yagita, Hideo; Thomas, Gary; Gores, Gregory James.

In: PLoS One, Vol. 9, No. 3, e92124, 14.03.2014.

Research output: Contribution to journalArticle

@article{b30c358986974763a937c83b993fcf1a,
title = "Cellular Inhibitor of Apoptosis (cIAP)-mediated ubiquitination of Phosphofurin Acidic Cluster Sorting protein 2 (PACS-2) negatively regulates Tumor necrosis factor-Related Apoptosis-Inducing Ligand (TRAIL) cytotoxicity",
abstract = "Lysosomal membrane permeabilization is an essential step in TRAIL-induced apoptosis of liver cancer cell lines. TRAIL-induced lysosomal membrane permeabilization is mediated by the multifunctional sorting protein PACS-2 and repressed by the E3 ligases cIAP-1 and cIAP-2. Despite the opposing roles for PACS-2 and cIAPs in TRAIL-induced apoptosis, an interaction between these proteins has yet to be examined. Herein, we report that cIAP-1 and cIAP-2 confer TRAIL resistance to hepatobiliary cancer cell lines by reducing PACS-2 levels. Under basal conditions, PACS-2 underwent K48-linked polyubiquitination, resulting in PACS-2 proteasomal degradation. Biochemical assays showed cIAP-1 and cIAP-2 interacted with PACS-2 in vitro and co-immunoprecipitation studies demonstrated that the two cIAPs bound PACS-2 in vivo. More importantly, both cIAP-1 and cIAP-2 directly mediated PACS-2 ubiquitination in a cell-free assay. Single c-Iap-1 or c-Iap-2 gene knock-outs in mouse hepatocytes did not lead to PACS-2 accumulation. However, deletion of both cIAP-1 and cIAP-2 reduced PACS-2 ubiquitination, which increased PACS-2 levels and sensitized HuH-7 cells to TRAIL-induced lysosomal membrane permeabilization and apoptosis. Correspondingly, deletion of cIAPs sensitized wild-type, but not PACS-2-deficient hepatocarcinoma cells or Pacs-2-/- mouse hepatocytes to TRAIL-induced apoptosis. Together, these data suggest cIAPs constitutively downregulate PACS-2 by polyubiquitination and proteasomal degradation, thereby restraining TRAIL-induced killing of liver cancer cells.",
author = "Guicciardi, {Maria Eugenia} and Werneburg, {Nathan W.} and Bronk, {Steven F.} and Adrian Franke and Hideo Yagita and Gary Thomas and Gores, {Gregory James}",
year = "2014",
month = "3",
day = "14",
doi = "10.1371/journal.pone.0092124",
language = "English (US)",
volume = "9",
journal = "PLoS One",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "3",

}

TY - JOUR

T1 - Cellular Inhibitor of Apoptosis (cIAP)-mediated ubiquitination of Phosphofurin Acidic Cluster Sorting protein 2 (PACS-2) negatively regulates Tumor necrosis factor-Related Apoptosis-Inducing Ligand (TRAIL) cytotoxicity

AU - Guicciardi, Maria Eugenia

AU - Werneburg, Nathan W.

AU - Bronk, Steven F.

AU - Franke, Adrian

AU - Yagita, Hideo

AU - Thomas, Gary

AU - Gores, Gregory James

PY - 2014/3/14

Y1 - 2014/3/14

N2 - Lysosomal membrane permeabilization is an essential step in TRAIL-induced apoptosis of liver cancer cell lines. TRAIL-induced lysosomal membrane permeabilization is mediated by the multifunctional sorting protein PACS-2 and repressed by the E3 ligases cIAP-1 and cIAP-2. Despite the opposing roles for PACS-2 and cIAPs in TRAIL-induced apoptosis, an interaction between these proteins has yet to be examined. Herein, we report that cIAP-1 and cIAP-2 confer TRAIL resistance to hepatobiliary cancer cell lines by reducing PACS-2 levels. Under basal conditions, PACS-2 underwent K48-linked polyubiquitination, resulting in PACS-2 proteasomal degradation. Biochemical assays showed cIAP-1 and cIAP-2 interacted with PACS-2 in vitro and co-immunoprecipitation studies demonstrated that the two cIAPs bound PACS-2 in vivo. More importantly, both cIAP-1 and cIAP-2 directly mediated PACS-2 ubiquitination in a cell-free assay. Single c-Iap-1 or c-Iap-2 gene knock-outs in mouse hepatocytes did not lead to PACS-2 accumulation. However, deletion of both cIAP-1 and cIAP-2 reduced PACS-2 ubiquitination, which increased PACS-2 levels and sensitized HuH-7 cells to TRAIL-induced lysosomal membrane permeabilization and apoptosis. Correspondingly, deletion of cIAPs sensitized wild-type, but not PACS-2-deficient hepatocarcinoma cells or Pacs-2-/- mouse hepatocytes to TRAIL-induced apoptosis. Together, these data suggest cIAPs constitutively downregulate PACS-2 by polyubiquitination and proteasomal degradation, thereby restraining TRAIL-induced killing of liver cancer cells.

AB - Lysosomal membrane permeabilization is an essential step in TRAIL-induced apoptosis of liver cancer cell lines. TRAIL-induced lysosomal membrane permeabilization is mediated by the multifunctional sorting protein PACS-2 and repressed by the E3 ligases cIAP-1 and cIAP-2. Despite the opposing roles for PACS-2 and cIAPs in TRAIL-induced apoptosis, an interaction between these proteins has yet to be examined. Herein, we report that cIAP-1 and cIAP-2 confer TRAIL resistance to hepatobiliary cancer cell lines by reducing PACS-2 levels. Under basal conditions, PACS-2 underwent K48-linked polyubiquitination, resulting in PACS-2 proteasomal degradation. Biochemical assays showed cIAP-1 and cIAP-2 interacted with PACS-2 in vitro and co-immunoprecipitation studies demonstrated that the two cIAPs bound PACS-2 in vivo. More importantly, both cIAP-1 and cIAP-2 directly mediated PACS-2 ubiquitination in a cell-free assay. Single c-Iap-1 or c-Iap-2 gene knock-outs in mouse hepatocytes did not lead to PACS-2 accumulation. However, deletion of both cIAP-1 and cIAP-2 reduced PACS-2 ubiquitination, which increased PACS-2 levels and sensitized HuH-7 cells to TRAIL-induced lysosomal membrane permeabilization and apoptosis. Correspondingly, deletion of cIAPs sensitized wild-type, but not PACS-2-deficient hepatocarcinoma cells or Pacs-2-/- mouse hepatocytes to TRAIL-induced apoptosis. Together, these data suggest cIAPs constitutively downregulate PACS-2 by polyubiquitination and proteasomal degradation, thereby restraining TRAIL-induced killing of liver cancer cells.

UR - http://www.scopus.com/inward/record.url?scp=84898479582&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84898479582&partnerID=8YFLogxK

U2 - 10.1371/journal.pone.0092124

DO - 10.1371/journal.pone.0092124

M3 - Article

VL - 9

JO - PLoS One

JF - PLoS One

SN - 1932-6203

IS - 3

M1 - e92124

ER -