TY - JOUR
T1 - Binding of the angiogenic/senescence inducer CCN1/CYR61 to integrin α6β1 drives endocrine resistance in breast cancer cells
AU - Espinoza, Ingrid
AU - Yang, Lin
AU - Steen, Travis Vander
AU - Vellon, Luciano
AU - Cuyàs, Elisabet
AU - Verdura, Sara
AU - Lau, Lester
AU - Menendez, Javier A.
AU - Lupu, Ruth
N1 - Funding Information:
This work was supported by the NIH National Cancer Institute Grants R01 CA118975 and R01 CA116623 (to Ruth Lupu) and by the U.S. Department of Defense (DOD)-Breakthrough 3 Grants BC151072 and BC151072P1 (to Ruth Lupu). Work in the Menendez laboratory is supported by the Spanish Ministry of Science and Innovation (Grant PID2019-10455GB-I00, Plan Nacional de l+D+I, founded by the European Regional Development Fund, Spain) and by an unrestricted research grant from the Fundació Oncolliga Girona (Lliga catalana d’ajuda al malalt de càncer, Girona). Elisabet Cuyàs holds a research contract “Miguel Servet” (CP20/00003) from the Instituto de Salud Carlos III, Spanish Ministry of Science and Innovation (Spain). The authors would like to thank Kenneth McCreath for editorial support.
Funding Information:
This work was supported by the NIH National Cancer Institute Grants R01 CA118975 and R01 CA116623 (to Ruth Lupu) and by the U.S. Department of Defense (DOD)-Breakthrough 3 Grants BC151072 and BC151072P1 (to Ruth Lupu). Work in the Menendez laboratory is supported by the Spanish Ministry of Science and Innovation (Grant PID2019-10455GB-I00, Plan Nacional de l+D+I, founded by the European Regional Development Fund, Spain) and by an unrestricted research grant from the Fundaci? Oncolliga Girona (Lliga catalana d?ajuda al malalt de c?ncer, Girona). Elisabet Cuy?s holds a research contract ?Miguel Servet? (CP20/00003) from the Instituto de Salud Carlos III, Spanish Ministry of Science and Innovation (Spain). The authors would like to thank Kenneth McCreath for editorial support.
Publisher Copyright:
© 2022 Espinoza et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2022
Y1 - 2022
N2 - CCN1/CYR61 promotes angiogenesis, tumor growth and chemoresistance by binding to its integrin receptor αvβ3 in endothelial and breast cancer (BC) cells. CCN1 controls also tissue regeneration by engaging its integrin receptorα6β1 to induce fibroblast senescence. Here, we explored if the ability of CCN1 to drive an endocrine resistancephenotype in estrogen receptor-positive BC cells relies on interactions with either αvβ3 or α6β1. First, we tookadvantage of site-specific mutagenesis abolishing the CCN1 receptor-binding sites to αvβ3 and α6β1 to determine theintegrin partner responsible for CCN1-driven endocrine resistance. Second, we explored a putative nuclear role ofCCN1 in regulating ERα-driven transcriptional responses. Retroviral forced expression of a CCN1 derivative with asingle amino acid change (D125A) that abrogates binding to αvβ3 partially phenocopied the endocrine resistancephenotype induced upon overexpression of wild-type (WT) CCN1. Forced expression of the CCN1 mutant TM,which abrogates all the T1, H1, and H2 binding sites to α6β1, failed to bypass the estrogen requirement foranchorage-independent growth or to promote resistance to tamoxifen. Wild-type CCN1 promoted estradiol-independent transcriptional activity of ERα and enhanced ERα agonist response to tamoxifen. The α6β1-binding-defective TM-CCN1 mutant lost the ERα co-activator-like behavior of WT-CCN1. Co-immunoprecipitation assaysrevealed a direct interaction between endogenous CCN1 and ERα, and in vitro approaches confirmed the ability ofrecombinant CCN1 to bind ERα. CCN1 signaling via α6β1, but not via αvβ3, drives an endocrine resistance phenotypethat involves a direct binding of CCN1 to ERα to regulate itstranscriptional activity in ER+ BC cells.
AB - CCN1/CYR61 promotes angiogenesis, tumor growth and chemoresistance by binding to its integrin receptor αvβ3 in endothelial and breast cancer (BC) cells. CCN1 controls also tissue regeneration by engaging its integrin receptorα6β1 to induce fibroblast senescence. Here, we explored if the ability of CCN1 to drive an endocrine resistancephenotype in estrogen receptor-positive BC cells relies on interactions with either αvβ3 or α6β1. First, we tookadvantage of site-specific mutagenesis abolishing the CCN1 receptor-binding sites to αvβ3 and α6β1 to determine theintegrin partner responsible for CCN1-driven endocrine resistance. Second, we explored a putative nuclear role ofCCN1 in regulating ERα-driven transcriptional responses. Retroviral forced expression of a CCN1 derivative with asingle amino acid change (D125A) that abrogates binding to αvβ3 partially phenocopied the endocrine resistancephenotype induced upon overexpression of wild-type (WT) CCN1. Forced expression of the CCN1 mutant TM,which abrogates all the T1, H1, and H2 binding sites to α6β1, failed to bypass the estrogen requirement foranchorage-independent growth or to promote resistance to tamoxifen. Wild-type CCN1 promoted estradiol-independent transcriptional activity of ERα and enhanced ERα agonist response to tamoxifen. The α6β1-binding-defective TM-CCN1 mutant lost the ERα co-activator-like behavior of WT-CCN1. Co-immunoprecipitation assaysrevealed a direct interaction between endogenous CCN1 and ERα, and in vitro approaches confirmed the ability ofrecombinant CCN1 to bind ERα. CCN1 signaling via α6β1, but not via αvβ3, drives an endocrine resistance phenotypethat involves a direct binding of CCN1 to ERα to regulate itstranscriptional activity in ER+ BC cells.
KW - Cyr61
KW - Estrogen receptor
KW - Integrins
KW - Matricellular proteins
KW - Tamoxifen
UR - http://www.scopus.com/inward/record.url?scp=85125000586&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85125000586&partnerID=8YFLogxK
U2 - 10.18632/aging.203882
DO - 10.18632/aging.203882
M3 - Article
C2 - 35148282
AN - SCOPUS:85125000586
SN - 1945-4589
VL - 14
SP - 1200
EP - 1213
JO - Aging
JF - Aging
IS - 3
ER -