Age-dependent effects of thoracic and capillary blood volume distribution on pulmonary artery pressure and lung diffusing capacity

Kirsten E. Coffman, Matthew G. Boeker, Alex R. Carlson, Bruce David Johnson

Research output: Contribution to journalArticle

Abstract

Aging is associated with pulmonary vascular remodeling and reduced distensibility. We investigated the influence of aging on changes in cardiac output (Q), mean pulmonary artery pressure (mPAP), and lung diffusing capacity in response to alterations in thoracic blood volume. The role of pulmonary smooth muscle tone was also interrogated via pulmonary vasodilation. Nine younger (27 ± 4 years) and nine older (71 ± 4 years) healthy adults reached steady-state in a Supine (0°), Upright (+20°), or Head-down (−20°) position in order to alter thoracic blood volume. In each position, echocardiography was performed to calculate mPAP and Q, and lung diffusing capacity for carbon monoxide (DLCO) and nitric oxide (DLNO) was assessed. Next, 100 mg sildenafil was administered to reduce pulmonary smooth muscle tone, after which the protocol was repeated. mPAP (P ≤ 0.029) and Q (P ≤ 0.032) were lower in the Upright versus Supine and Head-down positions, and mPAP was reduced following sildenafil administration (P = 0.019), in older adults only. SV was lower in the Upright versus Supine and Head-down positions in both younger (P ≤ 0.008) and older (P ≤ 0.003) adults. DLCO and DLNO were not greatly altered by position changes or sildenafil administration. However, the DLNO/DLCO ratio was lower in the Supine and/or Head-down positions (P ≤ 0.05), but higher following sildenafil administration (P ≤ 0.007), in both younger and older adults. In conclusion, older adults experience greater cardiopulmonary alterations following thoracic blood volume changes, and pulmonary smooth muscle tone plays a role in resting mPAP in older adults only. Furthermore, mPAP is an important determinant of pulmonary capillary blood volume distribution (DLNO/DLCO), regardless of age.

Original languageEnglish (US)
Article numbere13834
JournalPhysiological Reports
Volume6
Issue number17
DOIs
StatePublished - Sep 1 2018

Fingerprint

Blood Volume
Pulmonary Artery
Thorax
Pressure
Lung
Nitric Oxide
Head
Smooth Muscle
Lung Volume Measurements
Carbon Monoxide
Vasodilation
Cardiac Output
Echocardiography
Young Adult
Sildenafil Citrate

Keywords

  • Aging
  • cardiac output
  • pulmonary smooth muscle tone
  • pulmonary vascular distensibility
  • pulmonary vasculature

ASJC Scopus subject areas

  • Physiology
  • Physiology (medical)

Cite this

Age-dependent effects of thoracic and capillary blood volume distribution on pulmonary artery pressure and lung diffusing capacity. / Coffman, Kirsten E.; Boeker, Matthew G.; Carlson, Alex R.; Johnson, Bruce David.

In: Physiological Reports, Vol. 6, No. 17, e13834, 01.09.2018.

Research output: Contribution to journalArticle

@article{1c4be3c35076449086310f0af17b6807,
title = "Age-dependent effects of thoracic and capillary blood volume distribution on pulmonary artery pressure and lung diffusing capacity",
abstract = "Aging is associated with pulmonary vascular remodeling and reduced distensibility. We investigated the influence of aging on changes in cardiac output (Q), mean pulmonary artery pressure (mPAP), and lung diffusing capacity in response to alterations in thoracic blood volume. The role of pulmonary smooth muscle tone was also interrogated via pulmonary vasodilation. Nine younger (27 ± 4 years) and nine older (71 ± 4 years) healthy adults reached steady-state in a Supine (0°), Upright (+20°), or Head-down (−20°) position in order to alter thoracic blood volume. In each position, echocardiography was performed to calculate mPAP and Q, and lung diffusing capacity for carbon monoxide (DLCO) and nitric oxide (DLNO) was assessed. Next, 100 mg sildenafil was administered to reduce pulmonary smooth muscle tone, after which the protocol was repeated. mPAP (P ≤ 0.029) and Q (P ≤ 0.032) were lower in the Upright versus Supine and Head-down positions, and mPAP was reduced following sildenafil administration (P = 0.019), in older adults only. SV was lower in the Upright versus Supine and Head-down positions in both younger (P ≤ 0.008) and older (P ≤ 0.003) adults. DLCO and DLNO were not greatly altered by position changes or sildenafil administration. However, the DLNO/DLCO ratio was lower in the Supine and/or Head-down positions (P ≤ 0.05), but higher following sildenafil administration (P ≤ 0.007), in both younger and older adults. In conclusion, older adults experience greater cardiopulmonary alterations following thoracic blood volume changes, and pulmonary smooth muscle tone plays a role in resting mPAP in older adults only. Furthermore, mPAP is an important determinant of pulmonary capillary blood volume distribution (DLNO/DLCO), regardless of age.",
keywords = "Aging, cardiac output, pulmonary smooth muscle tone, pulmonary vascular distensibility, pulmonary vasculature",
author = "Coffman, {Kirsten E.} and Boeker, {Matthew G.} and Carlson, {Alex R.} and Johnson, {Bruce David}",
year = "2018",
month = "9",
day = "1",
doi = "10.14814/phy2.13834",
language = "English (US)",
volume = "6",
journal = "Physiological Reports",
issn = "2051-817X",
publisher = "John Wiley and Sons Inc.",
number = "17",

}

TY - JOUR

T1 - Age-dependent effects of thoracic and capillary blood volume distribution on pulmonary artery pressure and lung diffusing capacity

AU - Coffman, Kirsten E.

AU - Boeker, Matthew G.

AU - Carlson, Alex R.

AU - Johnson, Bruce David

PY - 2018/9/1

Y1 - 2018/9/1

N2 - Aging is associated with pulmonary vascular remodeling and reduced distensibility. We investigated the influence of aging on changes in cardiac output (Q), mean pulmonary artery pressure (mPAP), and lung diffusing capacity in response to alterations in thoracic blood volume. The role of pulmonary smooth muscle tone was also interrogated via pulmonary vasodilation. Nine younger (27 ± 4 years) and nine older (71 ± 4 years) healthy adults reached steady-state in a Supine (0°), Upright (+20°), or Head-down (−20°) position in order to alter thoracic blood volume. In each position, echocardiography was performed to calculate mPAP and Q, and lung diffusing capacity for carbon monoxide (DLCO) and nitric oxide (DLNO) was assessed. Next, 100 mg sildenafil was administered to reduce pulmonary smooth muscle tone, after which the protocol was repeated. mPAP (P ≤ 0.029) and Q (P ≤ 0.032) were lower in the Upright versus Supine and Head-down positions, and mPAP was reduced following sildenafil administration (P = 0.019), in older adults only. SV was lower in the Upright versus Supine and Head-down positions in both younger (P ≤ 0.008) and older (P ≤ 0.003) adults. DLCO and DLNO were not greatly altered by position changes or sildenafil administration. However, the DLNO/DLCO ratio was lower in the Supine and/or Head-down positions (P ≤ 0.05), but higher following sildenafil administration (P ≤ 0.007), in both younger and older adults. In conclusion, older adults experience greater cardiopulmonary alterations following thoracic blood volume changes, and pulmonary smooth muscle tone plays a role in resting mPAP in older adults only. Furthermore, mPAP is an important determinant of pulmonary capillary blood volume distribution (DLNO/DLCO), regardless of age.

AB - Aging is associated with pulmonary vascular remodeling and reduced distensibility. We investigated the influence of aging on changes in cardiac output (Q), mean pulmonary artery pressure (mPAP), and lung diffusing capacity in response to alterations in thoracic blood volume. The role of pulmonary smooth muscle tone was also interrogated via pulmonary vasodilation. Nine younger (27 ± 4 years) and nine older (71 ± 4 years) healthy adults reached steady-state in a Supine (0°), Upright (+20°), or Head-down (−20°) position in order to alter thoracic blood volume. In each position, echocardiography was performed to calculate mPAP and Q, and lung diffusing capacity for carbon monoxide (DLCO) and nitric oxide (DLNO) was assessed. Next, 100 mg sildenafil was administered to reduce pulmonary smooth muscle tone, after which the protocol was repeated. mPAP (P ≤ 0.029) and Q (P ≤ 0.032) were lower in the Upright versus Supine and Head-down positions, and mPAP was reduced following sildenafil administration (P = 0.019), in older adults only. SV was lower in the Upright versus Supine and Head-down positions in both younger (P ≤ 0.008) and older (P ≤ 0.003) adults. DLCO and DLNO were not greatly altered by position changes or sildenafil administration. However, the DLNO/DLCO ratio was lower in the Supine and/or Head-down positions (P ≤ 0.05), but higher following sildenafil administration (P ≤ 0.007), in both younger and older adults. In conclusion, older adults experience greater cardiopulmonary alterations following thoracic blood volume changes, and pulmonary smooth muscle tone plays a role in resting mPAP in older adults only. Furthermore, mPAP is an important determinant of pulmonary capillary blood volume distribution (DLNO/DLCO), regardless of age.

KW - Aging

KW - cardiac output

KW - pulmonary smooth muscle tone

KW - pulmonary vascular distensibility

KW - pulmonary vasculature

UR - http://www.scopus.com/inward/record.url?scp=85053331159&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85053331159&partnerID=8YFLogxK

U2 - 10.14814/phy2.13834

DO - 10.14814/phy2.13834

M3 - Article

C2 - 30175463

AN - SCOPUS:85053331159

VL - 6

JO - Physiological Reports

JF - Physiological Reports

SN - 2051-817X

IS - 17

M1 - e13834

ER -