TY - JOUR
T1 - A genome-wide association study of mammographic texture variation
AU - Liu, Yuxi
AU - Chen, Hongjie
AU - Heine, John
AU - Lindstrom, Sara
AU - Turman, Constance
AU - Warner, Erica T.
AU - Winham, Stacey J.
AU - Vachon, Celine M.
AU - Tamimi, Rulla M.
AU - Kraft, Peter
AU - Jiang, Xia
N1 - Funding Information:
We would like to thank the participants and staff of the NHS and NHSII for their valuable contributions as well as the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, WY. The BCAC MD GWAS was supported by CA244670 and CA194393. BCAC is funded by the European Union’s Horizon 2020 Research and Innovation Programme (grant numbers 634935 and 633784 for BRIDGES and B-CAST, respectively), and the PERSPECTIVE I&I project, funded by the Government of Canada through Genome Canada and the Canadian Institutes of Health Research, the Ministère de l’Économie et de l'Innovation du Québec through Genome Québec, the Quebec Breast Cancer Foundation. The EU Horizon 2020 Research and Innovation Programme funding source had no role in study design, data collection, data analysis, data interpretation or writing of the report. Additional funding for BCAC is provided via the Confluence project which is funded with intramural funds from the National Cancer Institute Intramural Research Program, National Institutes of Health. Genotyping of the OncoArray was funded by the NIH Grant U19 CA148065, and Cancer UK Grant C1287/A16563 and the PERSPECTIVE project supported by the Government of Canada through Genome Canada and the Canadian Institutes of Health Research (grant GPH-129344) and, the Ministère de l’Économie, Science et Innovation du Québec through Genome Québec and the PSRSIIRI-701 grant, and the Quebec Breast Cancer Foundation. Funding for iCOGS came from: the European Community’s Seventh Framework Programme under grant agreement n° 223175 (HEALTH-F2-2009-223175) (COGS), Cancer Research UK (C1287/A10118, C1287/A10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692, C8197/A16565), the National Institutes of Health (CA128978) and Post-Cancer GWAS initiative (1U19 CA148537, 1U19 CA148065 and 1U19 CA148112—the GAME-ON initiative), the Department of Defence (W81XWH-10-1-0341), the Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer, and Komen Foundation for the Cure, the Breast Cancer Research Foundation, and the Ovarian Cancer Research Fund.
Funding Information:
This work is supported by the National Cancer Institute (R01CA175080 and R01CA131332 to R.M.T., R01CA244670 to S.L., and R03CA224196 to X.J.), Avon Foundation for Women, Susan G. Komen for the Cure, and Breast Cancer Research Foundation. The Nurses’ Health Study is supported by the National Cancer Institute (UM1CA186107, P01CA87969, and R01CA49449). The Nurses’ Health Study II is supported by the National Cancer Institute (U01CA176726 and R01CA67262). The Mayo Mammography Health Study is supported by the National Cancer Institute (R01CA128931 and R01CA97396).
Funding Information:
We would like to thank the participants and staff of the NHS and NHSII for their valuable contributions as well as the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, WY. The BCAC MD GWAS was supported by CA244670 and CA194393. BCAC is funded by the European Union’s Horizon 2020 Research and Innovation Programme (grant numbers 634935 and 633784 for BRIDGES and B-CAST, respectively), and the PERSPECTIVE I&I project, funded by the Government of Canada through Genome Canada and the Canadian Institutes of Health Research, the Ministère de l’Économie et de l'Innovation du Québec through Genome Québec, the Quebec Breast Cancer Foundation. The EU Horizon 2020 Research and Innovation Programme funding source had no role in study design, data collection, data analysis, data interpretation or writing of the report. Additional funding for BCAC is provided via the Confluence project which is funded with intramural funds from the National Cancer Institute Intramural Research Program, National Institutes of Health. Genotyping of the OncoArray was funded by the NIH Grant U19 CA148065, and Cancer UK Grant C1287/A16563 and the PERSPECTIVE project supported by the Government of Canada through Genome Canada and the Canadian Institutes of Health Research (grant GPH-129344) and, the Ministère de l’Économie, Science et Innovation du Québec through Genome Québec and the PSRSIIRI-701 grant, and the Quebec Breast Cancer Foundation. Funding for iCOGS came from: the European Community’s Seventh Framework Programme under grant agreement n° 223175 (HEALTH-F2-2009-223175) (COGS), Cancer Research UK (C1287/A10118, C1287/A10710, C12292/A11174, C1281/A12014, C5047/A8384, C5047/A15007, C5047/A10692, C8197/A16565), the National Institutes of Health (CA128978) and Post-Cancer GWAS initiative (1U19 CA148537, 1U19 CA148065 and 1U19 CA148112—the GAME-ON initiative), the Department of Defence (W81XWH-10-1-0341), the Canadian Institutes of Health Research (CIHR) for the CIHR Team in Familial Risks of Breast Cancer, and Komen Foundation for the Cure, the Breast Cancer Research Foundation, and the Ovarian Cancer Research Fund.
Publisher Copyright:
© 2022, The Author(s).
PY - 2022/12
Y1 - 2022/12
N2 - Background: Breast parenchymal texture features, including grayscale variation (V), capture the patterns of texture variation on a mammogram and are associated with breast cancer risk, independent of mammographic density (MD). However, our knowledge on the genetic basis of these texture features is limited. Methods: We conducted a genome-wide association study of V in 7040 European-ancestry women. V assessments were generated from digitized film mammograms. We used linear regression to test the single-nucleotide polymorphism (SNP)-phenotype associations adjusting for age, body mass index (BMI), MD phenotypes, and the top four genetic principal components. We further calculated genetic correlations and performed SNP-set tests of V with MD, breast cancer risk, and other breast cancer risk factors. Results: We identified three genome-wide significant loci associated with V: rs138141444 (6q24.1) in ECT2L, rs79670367 (8q24.22) in LINC01591, and rs113174754 (12q22) near PGAM1P5. 6q24.1 and 8q24.22 have not previously been associated with MD phenotypes or breast cancer risk, while 12q22 is a known locus for both MD and breast cancer risk. Among known MD and breast cancer risk SNPs, we identified four variants that were associated with V at the Bonferroni-corrected thresholds accounting for the number of SNPs tested: rs335189 (5q23.2) in PRDM6, rs13256025 (8p21.2) in EBF2, rs11836164 (12p12.1) near SSPN, and rs17817449 (16q12.2) in FTO. We observed significant genetic correlations between V and mammographic dense area (rg = 0.79, P = 5.91 × 10−5), percent density (rg = 0.73, P = 1.00 × 10−4), and adult BMI (rg = − 0.36, P = 3.88 × 10−7). Additional significant relationships were observed for non-dense area (z = − 4.14, P = 3.42 × 10−5), estrogen receptor-positive breast cancer (z = 3.41, P = 6.41 × 10−4), and childhood body fatness (z = − 4.91, P = 9.05 × 10−7) from the SNP-set tests. Conclusions: These findings provide new insights into the genetic basis of mammographic texture variation and their associations with MD, breast cancer risk, and other breast cancer risk factors.
AB - Background: Breast parenchymal texture features, including grayscale variation (V), capture the patterns of texture variation on a mammogram and are associated with breast cancer risk, independent of mammographic density (MD). However, our knowledge on the genetic basis of these texture features is limited. Methods: We conducted a genome-wide association study of V in 7040 European-ancestry women. V assessments were generated from digitized film mammograms. We used linear regression to test the single-nucleotide polymorphism (SNP)-phenotype associations adjusting for age, body mass index (BMI), MD phenotypes, and the top four genetic principal components. We further calculated genetic correlations and performed SNP-set tests of V with MD, breast cancer risk, and other breast cancer risk factors. Results: We identified three genome-wide significant loci associated with V: rs138141444 (6q24.1) in ECT2L, rs79670367 (8q24.22) in LINC01591, and rs113174754 (12q22) near PGAM1P5. 6q24.1 and 8q24.22 have not previously been associated with MD phenotypes or breast cancer risk, while 12q22 is a known locus for both MD and breast cancer risk. Among known MD and breast cancer risk SNPs, we identified four variants that were associated with V at the Bonferroni-corrected thresholds accounting for the number of SNPs tested: rs335189 (5q23.2) in PRDM6, rs13256025 (8p21.2) in EBF2, rs11836164 (12p12.1) near SSPN, and rs17817449 (16q12.2) in FTO. We observed significant genetic correlations between V and mammographic dense area (rg = 0.79, P = 5.91 × 10−5), percent density (rg = 0.73, P = 1.00 × 10−4), and adult BMI (rg = − 0.36, P = 3.88 × 10−7). Additional significant relationships were observed for non-dense area (z = − 4.14, P = 3.42 × 10−5), estrogen receptor-positive breast cancer (z = 3.41, P = 6.41 × 10−4), and childhood body fatness (z = − 4.91, P = 9.05 × 10−7) from the SNP-set tests. Conclusions: These findings provide new insights into the genetic basis of mammographic texture variation and their associations with MD, breast cancer risk, and other breast cancer risk factors.
KW - Breast cancer
KW - Breast parenchymal texture feature
KW - GWAS
KW - Genetic correlation
KW - Mammographic density
KW - Texture variation
KW - V measure
UR - http://www.scopus.com/inward/record.url?scp=85141406520&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85141406520&partnerID=8YFLogxK
U2 - 10.1186/s13058-022-01570-8
DO - 10.1186/s13058-022-01570-8
M3 - Article
C2 - 36344993
AN - SCOPUS:85141406520
VL - 24
JO - Breast Cancer Research
JF - Breast Cancer Research
SN - 1465-5411
IS - 1
M1 - 76
ER -