TY - JOUR
T1 - Viscoelastic parameters as discriminators of breast masses
T2 - Initial human study results
AU - Kumar, Viksit
AU - Denis, Max
AU - Gregory, Adriana
AU - Bayat, Mahdi
AU - Mehrmohammadi, Mohammad
AU - Fazzio, Robert
AU - Fatemi, Mostafa
AU - Alizad, Azra
PY - 2018/10
Y1 - 2018/10
N2 - Shear wave elastography is emerging as a clinically valuable diagnostic tool to differentiate between benign and malignant breast masses. Elastography techniques assume that soft tissue can be modelled as a purely elastic medium. However, this assumption is often violated as soft tissue exhibits viscoelastic properties. In order to explore the role of viscoelastic parameters in suspicious breast masses, a study was conducted on a group of patients using shear wave dispersion ultrasound vibrometry in the frequency range of 50-400 Hz. A total of 43 female patients with suspicious breast masses were recruited before their scheduled biopsy. Of those, 15 patients did not meet the data selection criteria. Voigt model based shear elasticity showed a significantly (p = 7.88x10-6) higher median value for the 13 malignant masses (16.76±13.10 kPa) compared to 15 benign masses (1.40±1.12 kPa). Voigt model based shear viscosity was significantly different (p = 4.13x10-5) between malignant (8.22±3.36 Pa-s) and benign masses (2.83±1.47 Pa-s). Moreover, the estimated time constant from the Voigt model, which is dependent on both shear elasticity and viscosity, differed significantly (p = 6.13x10-5) between malignant (0.68±0.33 ms) and benign masses (3.05±1.95 ms). Results suggest that besides elasticity, viscosity based parameters like shear viscosity and time constant can also be used to differentiate between malignant and benign breast masses.
AB - Shear wave elastography is emerging as a clinically valuable diagnostic tool to differentiate between benign and malignant breast masses. Elastography techniques assume that soft tissue can be modelled as a purely elastic medium. However, this assumption is often violated as soft tissue exhibits viscoelastic properties. In order to explore the role of viscoelastic parameters in suspicious breast masses, a study was conducted on a group of patients using shear wave dispersion ultrasound vibrometry in the frequency range of 50-400 Hz. A total of 43 female patients with suspicious breast masses were recruited before their scheduled biopsy. Of those, 15 patients did not meet the data selection criteria. Voigt model based shear elasticity showed a significantly (p = 7.88x10-6) higher median value for the 13 malignant masses (16.76±13.10 kPa) compared to 15 benign masses (1.40±1.12 kPa). Voigt model based shear viscosity was significantly different (p = 4.13x10-5) between malignant (8.22±3.36 Pa-s) and benign masses (2.83±1.47 Pa-s). Moreover, the estimated time constant from the Voigt model, which is dependent on both shear elasticity and viscosity, differed significantly (p = 6.13x10-5) between malignant (0.68±0.33 ms) and benign masses (3.05±1.95 ms). Results suggest that besides elasticity, viscosity based parameters like shear viscosity and time constant can also be used to differentiate between malignant and benign breast masses.
UR - http://www.scopus.com/inward/record.url?scp=85054898075&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85054898075&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0205717
DO - 10.1371/journal.pone.0205717
M3 - Article
C2 - 30312358
AN - SCOPUS:85054898075
VL - 13
JO - PLoS One
JF - PLoS One
SN - 1932-6203
IS - 10
M1 - e0205717
ER -