Vasopeptidase inhibition

A new concept in blood pressure management

Research output: Contribution to journalArticle

203 Citations (Scopus)

Abstract

Vasopeptidase inhibition is a new concept in cardiovascular therapy. It involves simultaneous inhibition with a single molecule of two key enzymes involved in the regulation of cardiovascular function, neutral endopeptidase (EC 24.11; NEP) and angiotensin-converting enzyme (ACE). Simultaneous inhibition of NEP and ACE increases natriuretic and vasodilatory peptides (including atrial natriuretic peptide [ANP], brain natriuretic peptide [BNP] of myocardial cell origin, and C-type natriuretic peptide [CNP] of endothelial cell origin) and increases the half-life of other vasodilator peptides including bradykinin and adrenomedullin. By simultaneously inhibiting the renin-angiotensin-aldosterone system and potentiating the natriuretic peptide system, vasopeptidase inhibitors (VPIs) reduce vasoconstriction and enhance vasodilation, thereby decreasing vascular tone and lowering blood pressure. Omapatrilat, a heterocyclic dipeptide mimetic, is a novel vasopeptidase inhibitor and a single molecule that simultaneously inhibits NEP and ACE with similar inhibition constants. Unlike ACE inhibitors, omapatrilat demonstrates antihypertensive efficacy in low-, normal-, and high-renin animal models. Unlike NEP inhibitors, omapatrilat provides a potent and sustained antihypertensive effect in spontaneously hypertensive rats (SHR), a model of human essential hypertension. In animal models of heart failure, omapatrilat is more effective than ACE inhibition in improving cardiac performance and ventricular remodeling and prolonging survival. Omapatrilat effectively reduces blood pressure, provides target-organ protection, and reduces morbidity and mortality from cardiovascular events in animal models. Omapatrilat is the first VPI to enter advanced USA clinical trials. Omapatrilat appears to be a safe, well-tolerated and effective antihypertensive in humans. Vasopeptidase inhibition is a novel and efficacious strategy for treating cardiovascular disorders, including hypertension and heart failure, that may offer advantages over currently available therapies.

Original languageEnglish (US)
JournalJournal of Hypertension, Supplement
Volume17
Issue number1
StatePublished - 1999

Fingerprint

Blood Pressure
Peptidyl-Dipeptidase A
Antihypertensive Agents
Natriuretic Peptides
Animal Models
Heart Failure
C-Type Natriuretic Peptide
Adrenomedullin
Neprilysin
Ventricular Remodeling
Dipeptides
Brain Natriuretic Peptide
Atrial Natriuretic Factor
Bradykinin
Inbred SHR Rats
Renin-Angiotensin System
omapatrilat
Vasoconstriction
Vasodilator Agents
Angiotensin-Converting Enzyme Inhibitors

Keywords

  • Angiotensin-converting enzyme
  • Natriuretic peptides
  • Neutral endopeptidase
  • Vasopeptidase inhibitors

ASJC Scopus subject areas

  • Internal Medicine

Cite this

Vasopeptidase inhibition : A new concept in blood pressure management. / Burnett, John C Jr.

In: Journal of Hypertension, Supplement, Vol. 17, No. 1, 1999.

Research output: Contribution to journalArticle

@article{2b079e3b83ae4f01822d011a4c239313,
title = "Vasopeptidase inhibition: A new concept in blood pressure management",
abstract = "Vasopeptidase inhibition is a new concept in cardiovascular therapy. It involves simultaneous inhibition with a single molecule of two key enzymes involved in the regulation of cardiovascular function, neutral endopeptidase (EC 24.11; NEP) and angiotensin-converting enzyme (ACE). Simultaneous inhibition of NEP and ACE increases natriuretic and vasodilatory peptides (including atrial natriuretic peptide [ANP], brain natriuretic peptide [BNP] of myocardial cell origin, and C-type natriuretic peptide [CNP] of endothelial cell origin) and increases the half-life of other vasodilator peptides including bradykinin and adrenomedullin. By simultaneously inhibiting the renin-angiotensin-aldosterone system and potentiating the natriuretic peptide system, vasopeptidase inhibitors (VPIs) reduce vasoconstriction and enhance vasodilation, thereby decreasing vascular tone and lowering blood pressure. Omapatrilat, a heterocyclic dipeptide mimetic, is a novel vasopeptidase inhibitor and a single molecule that simultaneously inhibits NEP and ACE with similar inhibition constants. Unlike ACE inhibitors, omapatrilat demonstrates antihypertensive efficacy in low-, normal-, and high-renin animal models. Unlike NEP inhibitors, omapatrilat provides a potent and sustained antihypertensive effect in spontaneously hypertensive rats (SHR), a model of human essential hypertension. In animal models of heart failure, omapatrilat is more effective than ACE inhibition in improving cardiac performance and ventricular remodeling and prolonging survival. Omapatrilat effectively reduces blood pressure, provides target-organ protection, and reduces morbidity and mortality from cardiovascular events in animal models. Omapatrilat is the first VPI to enter advanced USA clinical trials. Omapatrilat appears to be a safe, well-tolerated and effective antihypertensive in humans. Vasopeptidase inhibition is a novel and efficacious strategy for treating cardiovascular disorders, including hypertension and heart failure, that may offer advantages over currently available therapies.",
keywords = "Angiotensin-converting enzyme, Natriuretic peptides, Neutral endopeptidase, Vasopeptidase inhibitors",
author = "Burnett, {John C Jr.}",
year = "1999",
language = "English (US)",
volume = "17",
journal = "Journal of Hypertension, Supplement",
issn = "0952-1178",
publisher = "Lippincott Williams and Wilkins",
number = "1",

}

TY - JOUR

T1 - Vasopeptidase inhibition

T2 - A new concept in blood pressure management

AU - Burnett, John C Jr.

PY - 1999

Y1 - 1999

N2 - Vasopeptidase inhibition is a new concept in cardiovascular therapy. It involves simultaneous inhibition with a single molecule of two key enzymes involved in the regulation of cardiovascular function, neutral endopeptidase (EC 24.11; NEP) and angiotensin-converting enzyme (ACE). Simultaneous inhibition of NEP and ACE increases natriuretic and vasodilatory peptides (including atrial natriuretic peptide [ANP], brain natriuretic peptide [BNP] of myocardial cell origin, and C-type natriuretic peptide [CNP] of endothelial cell origin) and increases the half-life of other vasodilator peptides including bradykinin and adrenomedullin. By simultaneously inhibiting the renin-angiotensin-aldosterone system and potentiating the natriuretic peptide system, vasopeptidase inhibitors (VPIs) reduce vasoconstriction and enhance vasodilation, thereby decreasing vascular tone and lowering blood pressure. Omapatrilat, a heterocyclic dipeptide mimetic, is a novel vasopeptidase inhibitor and a single molecule that simultaneously inhibits NEP and ACE with similar inhibition constants. Unlike ACE inhibitors, omapatrilat demonstrates antihypertensive efficacy in low-, normal-, and high-renin animal models. Unlike NEP inhibitors, omapatrilat provides a potent and sustained antihypertensive effect in spontaneously hypertensive rats (SHR), a model of human essential hypertension. In animal models of heart failure, omapatrilat is more effective than ACE inhibition in improving cardiac performance and ventricular remodeling and prolonging survival. Omapatrilat effectively reduces blood pressure, provides target-organ protection, and reduces morbidity and mortality from cardiovascular events in animal models. Omapatrilat is the first VPI to enter advanced USA clinical trials. Omapatrilat appears to be a safe, well-tolerated and effective antihypertensive in humans. Vasopeptidase inhibition is a novel and efficacious strategy for treating cardiovascular disorders, including hypertension and heart failure, that may offer advantages over currently available therapies.

AB - Vasopeptidase inhibition is a new concept in cardiovascular therapy. It involves simultaneous inhibition with a single molecule of two key enzymes involved in the regulation of cardiovascular function, neutral endopeptidase (EC 24.11; NEP) and angiotensin-converting enzyme (ACE). Simultaneous inhibition of NEP and ACE increases natriuretic and vasodilatory peptides (including atrial natriuretic peptide [ANP], brain natriuretic peptide [BNP] of myocardial cell origin, and C-type natriuretic peptide [CNP] of endothelial cell origin) and increases the half-life of other vasodilator peptides including bradykinin and adrenomedullin. By simultaneously inhibiting the renin-angiotensin-aldosterone system and potentiating the natriuretic peptide system, vasopeptidase inhibitors (VPIs) reduce vasoconstriction and enhance vasodilation, thereby decreasing vascular tone and lowering blood pressure. Omapatrilat, a heterocyclic dipeptide mimetic, is a novel vasopeptidase inhibitor and a single molecule that simultaneously inhibits NEP and ACE with similar inhibition constants. Unlike ACE inhibitors, omapatrilat demonstrates antihypertensive efficacy in low-, normal-, and high-renin animal models. Unlike NEP inhibitors, omapatrilat provides a potent and sustained antihypertensive effect in spontaneously hypertensive rats (SHR), a model of human essential hypertension. In animal models of heart failure, omapatrilat is more effective than ACE inhibition in improving cardiac performance and ventricular remodeling and prolonging survival. Omapatrilat effectively reduces blood pressure, provides target-organ protection, and reduces morbidity and mortality from cardiovascular events in animal models. Omapatrilat is the first VPI to enter advanced USA clinical trials. Omapatrilat appears to be a safe, well-tolerated and effective antihypertensive in humans. Vasopeptidase inhibition is a novel and efficacious strategy for treating cardiovascular disorders, including hypertension and heart failure, that may offer advantages over currently available therapies.

KW - Angiotensin-converting enzyme

KW - Natriuretic peptides

KW - Neutral endopeptidase

KW - Vasopeptidase inhibitors

UR - http://www.scopus.com/inward/record.url?scp=0033011038&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033011038&partnerID=8YFLogxK

M3 - Article

VL - 17

JO - Journal of Hypertension, Supplement

JF - Journal of Hypertension, Supplement

SN - 0952-1178

IS - 1

ER -