Vascular phenotype of amyloid precursor protein-deficient mice

Livius V. d'Uscio, Zvonimir S Katusic

Research output: Contribution to journalArticle

Abstract

The amyloid precursor protein (APP) is expressed in the blood vessel wall, but the physiological function of APP is not completely understood. Previous studies established that APP has amine oxidase activity responsible for degradation of catecholamines. In the present study, we characterized the vascular phenotype of APP-knockout (APP-/-) mice. We demonstrate that circulating levels of catecholamines are significantly increased in male as compared with female APP-/- mice. Studies of vasomotor function in isolated aortas revealed that contractions to the α1-receptor agonist phenylephrine were significantly reduced in male APP-/- mice but not in females. In addition, contractions to G protein activation with sodium fluoride were reduced exclusively in male APP-/- mice aortas. The endothelium-dependent relaxations to acetylcholine were not affected by the loss of APP in mice of both sexes. Further analysis of the mechanisms underlying endothelium-dependent relaxations revealed that inhibition of cyclooxygenase by indomethacin significantly impaired relaxations to acetylcholine exclusively in male APP-/- mice. Furthermore, acetylcholine-induced production of cyclic guanosine monophosphate (cGMP) was significantly reduced in male APP-/- mice aortas while acetylcholine-induced production of cyclic adenosine monophosphate (cAMP) was enhanced. We concluded that altered vascular reactivity to phenylephrine appears to be in part the result of chronic exposure of male APP-/- aorta to high circulating levels of catecholamines. The mechanisms responsible for the impairment of endothelium-dependent cGMP signaling and adaptive enhancement of endothelium-dependent production of cAMP remain to be defined. NEW & NOTEWORTHY Male amyloid precursor protein (APP)-deficient mice have higher circulating levels of catecholamines as compared with female APP-deficient mice. As a consequence, endothelium-dependent and endothelium-independent vasomotor functions of male APP-deficient mice are significantly altered. Under physiological conditions, expression of APP appears to play an important role in vascular function.

Original languageEnglish (US)
Pages (from-to)H1297-H1308
JournalAmerican journal of physiology. Heart and circulatory physiology
Volume316
Issue number6
DOIs
StatePublished - Jun 1 2019

Fingerprint

Amyloid beta-Protein Precursor
Blood Vessels
Phenotype
Endothelium
Acetylcholine
Catecholamines
Aorta
Cyclic GMP
Phenylephrine
Cyclic AMP
Sodium Fluoride
Prostaglandin-Endoperoxide Synthases
GTP-Binding Proteins
Knockout Mice
Indomethacin
Amines

Keywords

  • amyloid precursor protein
  • amyloid-β
  • catecholamines
  • endothelial function
  • endothelium
  • phenylephrine
  • vascular

ASJC Scopus subject areas

  • Physiology
  • Cardiology and Cardiovascular Medicine
  • Physiology (medical)

Cite this

Vascular phenotype of amyloid precursor protein-deficient mice. / d'Uscio, Livius V.; Katusic, Zvonimir S.

In: American journal of physiology. Heart and circulatory physiology, Vol. 316, No. 6, 01.06.2019, p. H1297-H1308.

Research output: Contribution to journalArticle

@article{279477933da8472b97cd4504787512c8,
title = "Vascular phenotype of amyloid precursor protein-deficient mice",
abstract = "The amyloid precursor protein (APP) is expressed in the blood vessel wall, but the physiological function of APP is not completely understood. Previous studies established that APP has amine oxidase activity responsible for degradation of catecholamines. In the present study, we characterized the vascular phenotype of APP-knockout (APP-/-) mice. We demonstrate that circulating levels of catecholamines are significantly increased in male as compared with female APP-/- mice. Studies of vasomotor function in isolated aortas revealed that contractions to the α1-receptor agonist phenylephrine were significantly reduced in male APP-/- mice but not in females. In addition, contractions to G protein activation with sodium fluoride were reduced exclusively in male APP-/- mice aortas. The endothelium-dependent relaxations to acetylcholine were not affected by the loss of APP in mice of both sexes. Further analysis of the mechanisms underlying endothelium-dependent relaxations revealed that inhibition of cyclooxygenase by indomethacin significantly impaired relaxations to acetylcholine exclusively in male APP-/- mice. Furthermore, acetylcholine-induced production of cyclic guanosine monophosphate (cGMP) was significantly reduced in male APP-/- mice aortas while acetylcholine-induced production of cyclic adenosine monophosphate (cAMP) was enhanced. We concluded that altered vascular reactivity to phenylephrine appears to be in part the result of chronic exposure of male APP-/- aorta to high circulating levels of catecholamines. The mechanisms responsible for the impairment of endothelium-dependent cGMP signaling and adaptive enhancement of endothelium-dependent production of cAMP remain to be defined. NEW & NOTEWORTHY Male amyloid precursor protein (APP)-deficient mice have higher circulating levels of catecholamines as compared with female APP-deficient mice. As a consequence, endothelium-dependent and endothelium-independent vasomotor functions of male APP-deficient mice are significantly altered. Under physiological conditions, expression of APP appears to play an important role in vascular function.",
keywords = "amyloid precursor protein, amyloid-β, catecholamines, endothelial function, endothelium, phenylephrine, vascular",
author = "d'Uscio, {Livius V.} and Katusic, {Zvonimir S}",
year = "2019",
month = "6",
day = "1",
doi = "10.1152/ajpheart.00539.2018",
language = "English (US)",
volume = "316",
pages = "H1297--H1308",
journal = "American Journal of Physiology - Heart and Circulatory Physiology",
issn = "0363-6135",
publisher = "American Physiological Society",
number = "6",

}

TY - JOUR

T1 - Vascular phenotype of amyloid precursor protein-deficient mice

AU - d'Uscio, Livius V.

AU - Katusic, Zvonimir S

PY - 2019/6/1

Y1 - 2019/6/1

N2 - The amyloid precursor protein (APP) is expressed in the blood vessel wall, but the physiological function of APP is not completely understood. Previous studies established that APP has amine oxidase activity responsible for degradation of catecholamines. In the present study, we characterized the vascular phenotype of APP-knockout (APP-/-) mice. We demonstrate that circulating levels of catecholamines are significantly increased in male as compared with female APP-/- mice. Studies of vasomotor function in isolated aortas revealed that contractions to the α1-receptor agonist phenylephrine were significantly reduced in male APP-/- mice but not in females. In addition, contractions to G protein activation with sodium fluoride were reduced exclusively in male APP-/- mice aortas. The endothelium-dependent relaxations to acetylcholine were not affected by the loss of APP in mice of both sexes. Further analysis of the mechanisms underlying endothelium-dependent relaxations revealed that inhibition of cyclooxygenase by indomethacin significantly impaired relaxations to acetylcholine exclusively in male APP-/- mice. Furthermore, acetylcholine-induced production of cyclic guanosine monophosphate (cGMP) was significantly reduced in male APP-/- mice aortas while acetylcholine-induced production of cyclic adenosine monophosphate (cAMP) was enhanced. We concluded that altered vascular reactivity to phenylephrine appears to be in part the result of chronic exposure of male APP-/- aorta to high circulating levels of catecholamines. The mechanisms responsible for the impairment of endothelium-dependent cGMP signaling and adaptive enhancement of endothelium-dependent production of cAMP remain to be defined. NEW & NOTEWORTHY Male amyloid precursor protein (APP)-deficient mice have higher circulating levels of catecholamines as compared with female APP-deficient mice. As a consequence, endothelium-dependent and endothelium-independent vasomotor functions of male APP-deficient mice are significantly altered. Under physiological conditions, expression of APP appears to play an important role in vascular function.

AB - The amyloid precursor protein (APP) is expressed in the blood vessel wall, but the physiological function of APP is not completely understood. Previous studies established that APP has amine oxidase activity responsible for degradation of catecholamines. In the present study, we characterized the vascular phenotype of APP-knockout (APP-/-) mice. We demonstrate that circulating levels of catecholamines are significantly increased in male as compared with female APP-/- mice. Studies of vasomotor function in isolated aortas revealed that contractions to the α1-receptor agonist phenylephrine were significantly reduced in male APP-/- mice but not in females. In addition, contractions to G protein activation with sodium fluoride were reduced exclusively in male APP-/- mice aortas. The endothelium-dependent relaxations to acetylcholine were not affected by the loss of APP in mice of both sexes. Further analysis of the mechanisms underlying endothelium-dependent relaxations revealed that inhibition of cyclooxygenase by indomethacin significantly impaired relaxations to acetylcholine exclusively in male APP-/- mice. Furthermore, acetylcholine-induced production of cyclic guanosine monophosphate (cGMP) was significantly reduced in male APP-/- mice aortas while acetylcholine-induced production of cyclic adenosine monophosphate (cAMP) was enhanced. We concluded that altered vascular reactivity to phenylephrine appears to be in part the result of chronic exposure of male APP-/- aorta to high circulating levels of catecholamines. The mechanisms responsible for the impairment of endothelium-dependent cGMP signaling and adaptive enhancement of endothelium-dependent production of cAMP remain to be defined. NEW & NOTEWORTHY Male amyloid precursor protein (APP)-deficient mice have higher circulating levels of catecholamines as compared with female APP-deficient mice. As a consequence, endothelium-dependent and endothelium-independent vasomotor functions of male APP-deficient mice are significantly altered. Under physiological conditions, expression of APP appears to play an important role in vascular function.

KW - amyloid precursor protein

KW - amyloid-β

KW - catecholamines

KW - endothelial function

KW - endothelium

KW - phenylephrine

KW - vascular

UR - http://www.scopus.com/inward/record.url?scp=85066163551&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85066163551&partnerID=8YFLogxK

U2 - 10.1152/ajpheart.00539.2018

DO - 10.1152/ajpheart.00539.2018

M3 - Article

VL - 316

SP - H1297-H1308

JO - American Journal of Physiology - Heart and Circulatory Physiology

JF - American Journal of Physiology - Heart and Circulatory Physiology

SN - 0363-6135

IS - 6

ER -