Use of natural language processing to improve predictive models for imaging utilization in children presenting to the emergency department

Xingyu Zhang, M. Fernanda Bellolio, Pau Medrano-Gracia, Konrad Werys, Sheng Yang, Prashant Mahajan

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Objective: To examine the association between the medical imaging utilization and information related to patients' socioeconomic, demographic and clinical factors during the patients' ED visits; and to develop predictive models using these associated factors including natural language elements to predict the medical imaging utilization at pediatric ED. Methods: Pediatric patients' data from the 2012-2016 United States National Hospital Ambulatory Medical Care Survey was included to build the models to predict the use of imaging in children presenting to the ED. Multivariable logistic regression models were built with structured variables such as temperature, heart rate, age, and unstructured variables such as reason for visit, free text nursing notes and combined data available at triage. NLP techniques were used to extract information from the unstructured data. Results: Of the 27,665 pediatric ED visits included in the study, 8394 (30.3%) received medical imaging in the ED, including 6922 (25.0%) who had an X-ray and 1367 (4.9%) who had a computed tomography (CT) scan. In the predictive model including only structured variables, the c-statistic was 0.71 (95% CI: 0.70-0.71) for any imaging use, 0.69 (95% CI: 0.68-0.70) for X-ray, and 0.77 (95% CI: 0.76-0.78) for CT. Models including only unstructured information had c-statistics of 0.81 (95% CI: 0.81-0.82) for any imaging use, 0.82 (95% CI: 0.82-0.83) for X-ray, and 0.85 (95% CI: 0.83-0.86) for CT scans. When both structured variables and free text variables were included, the c-statistics reached 0.82 (95% CI: 0.82-0.83) for any imaging use, 0.83 (95% CI: 0.83-0.84) for X-ray, and 0.87 (95% CI: 0.86-0.88) for CT. Conclusions: Both CT and X-rays are commonly used in the pediatric ED with one third of the visits receiving at least one. Patients' socioeconomic, demographic and clinical factors presented at ED triage period were associated with the medical imaging utilization. Predictive models combining structured and unstructured variables available at triage performed better than models using structured or unstructured variables alone, suggesting the potential for use of NLP in determining resource utilization.

Original languageEnglish (US)
Article number287
JournalBMC Medical Informatics and Decision Making
Volume19
Issue number1
DOIs
StatePublished - Dec 30 2019

Keywords

  • Medical imaging utilization
  • Natural language processing
  • Pediatric emergency department
  • Predictive model

ASJC Scopus subject areas

  • Health Policy
  • Health Informatics

Fingerprint Dive into the research topics of 'Use of natural language processing to improve predictive models for imaging utilization in children presenting to the emergency department'. Together they form a unique fingerprint.

Cite this