TY - JOUR
T1 - Use of Mobile and Wearable Artificial Intelligence in Child and Adolescent Psychiatry
T2 - Scoping Review
AU - Welch, Victoria
AU - Wy, Tom Joshua
AU - Ligezka, Anna
AU - Hassett, Leslie C.
AU - Croarkin, Paul E.
AU - Athreya, Arjun P.
AU - Romanowicz, Magdalena
N1 - Funding Information:
This study was partially supported by the Mayo Clinic Summer Undergraduate Research Fellowship, National Science Foundation under grant 2041339; National Institutes of Health under grants R01 MH113700 and R01 MH124655; the Mayo Clinic Center for Individualized Medicine, and the Mayo Clinic Center for Clinical and Translational Science. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation or National Institutes of Health.
Funding Information:
PC has received research support from Pfizer, Inc and equipment support from Neuronetics, Inc and MagVenture, Inc. He has received grant in kind support from AssureRX for supplies and genotyping. He has been the primary investigator for a multicenter study funded by Neuronetics, Inc and a site primary investigator for a study funded by NeoSync, Inc. He has served as a paid consultant for Engrail Therapeutics, Myriad Neuroscience, Procter and Gamble Company, and Sunovion.
Publisher Copyright:
© 2022 Journal of Medical Internet Research. All rights reserved.
PY - 2022/3
Y1 - 2022/3
N2 - Background: Mental health disorders are a leading cause of medical disabilities across an individual's lifespan. This burden is particularly substantial in children and adolescents because of challenges in diagnosis and the lack of precision medicine approaches. However, the widespread adoption of wearable devices (eg, smart watches) that are conducive for artificial intelligence applications to remotely diagnose and manage psychiatric disorders in children and adolescents is promising. Objective: This study aims to conduct a scoping review to study, characterize, and identify areas of innovations with wearable devices that can augment current in-person physician assessments to individualize diagnosis and management of psychiatric disorders in child and adolescent psychiatry. Methods: This scoping review used information from the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. A comprehensive search of several databases from 2011 to June 25, 2021, limited to the English language and excluding animal studies, was conducted. The databases included Ovid MEDLINE and Epub ahead of print, in-process and other nonindexed citations, and daily; Ovid Embase; Ovid Cochrane Central Register of Controlled Trials; Ovid Cochrane Database of Systematic Reviews; Web of Science; and Scopus. Results: The initial search yielded 344 articles, from which 19 (5.5%) articles were left on the final source list for this scoping review. Articles were divided into three main groups as follows: studies with the main focus on autism spectrum disorder, attention-deficit/hyperactivity disorder, and internalizing disorders such as anxiety disorders. Most of the studies used either cardio-fitness chest straps with electrocardiogram sensors or wrist-worn biosensors, such as watches by Fitbit. Both allowed passive data collection of the physiological signals. Conclusions: Our scoping review found a large heterogeneity of methods and findings in artificial intelligence studies in child psychiatry. Overall, the largest gap identified in this scoping review is the lack of randomized controlled trials, as most studies available were pilot studies and feasibility trials.
AB - Background: Mental health disorders are a leading cause of medical disabilities across an individual's lifespan. This burden is particularly substantial in children and adolescents because of challenges in diagnosis and the lack of precision medicine approaches. However, the widespread adoption of wearable devices (eg, smart watches) that are conducive for artificial intelligence applications to remotely diagnose and manage psychiatric disorders in children and adolescents is promising. Objective: This study aims to conduct a scoping review to study, characterize, and identify areas of innovations with wearable devices that can augment current in-person physician assessments to individualize diagnosis and management of psychiatric disorders in child and adolescent psychiatry. Methods: This scoping review used information from the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. A comprehensive search of several databases from 2011 to June 25, 2021, limited to the English language and excluding animal studies, was conducted. The databases included Ovid MEDLINE and Epub ahead of print, in-process and other nonindexed citations, and daily; Ovid Embase; Ovid Cochrane Central Register of Controlled Trials; Ovid Cochrane Database of Systematic Reviews; Web of Science; and Scopus. Results: The initial search yielded 344 articles, from which 19 (5.5%) articles were left on the final source list for this scoping review. Articles were divided into three main groups as follows: studies with the main focus on autism spectrum disorder, attention-deficit/hyperactivity disorder, and internalizing disorders such as anxiety disorders. Most of the studies used either cardio-fitness chest straps with electrocardiogram sensors or wrist-worn biosensors, such as watches by Fitbit. Both allowed passive data collection of the physiological signals. Conclusions: Our scoping review found a large heterogeneity of methods and findings in artificial intelligence studies in child psychiatry. Overall, the largest gap identified in this scoping review is the lack of randomized controlled trials, as most studies available were pilot studies and feasibility trials.
KW - artificial intelligence
KW - child psychiatry
KW - mobile computing
KW - wearable technologies
UR - http://www.scopus.com/inward/record.url?scp=85126422214&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85126422214&partnerID=8YFLogxK
U2 - 10.2196/33560
DO - 10.2196/33560
M3 - Review article
C2 - 35285812
AN - SCOPUS:85126422214
SN - 1439-4456
VL - 24
JO - Journal of Medical Internet Research
JF - Journal of Medical Internet Research
IS - 3
M1 - e33560
ER -