Unsupervised single-cell analysis in triple-negative breast cancer: A case study

Arjun P. Athreya, Alan J. Gaglio, Zbigniew T. Kalbarczyk, Ravishankar K. Iyer, Junmei Cairns, Krishna R. Kalari, Richard M. Weinshilboum, Liewei Wang

Research output: Chapter in Book/Report/Conference proceedingConference contribution

4 Scopus citations

Abstract

This paper demonstrates an unsupervised learning approach to identify genes with significant differential expression across single-cell subpopulations induced by therapeutic treatment. Identifying this set of genes makes it possible to use well-established bioinformatics approaches such as pathway analysis to establish their biological relevance. Then, a biologist can use his/her prior knowledge to investigate in the laboratory, a few particular candidates among the subset of genes overlapping with relevant pathways. Due to the large size of the human genome and limitations in cost and skilled resources, biologists benefit from analytical methods combined with pathway analysis to design laboratory experiments focusing on only a few significant genes. As an example, we show how model-based unsupervised methods can identify a small set of genes (1% of the genome) that have significant differential expression in single-cells and are also highly correlated to pathways (p-value < 1E - 7) with anticancer effects driven by the antidiabetic drug metformin. Further analysis of genes on these relevant pathways reveal three candidate genes previously implicated in several anticancer mechanisms in other cancers, not driven by metformin. Identification of these genes can help biologists and clinicians design laboratory experiments to establish the molecular mechanisms of metformin in triple-negative breast cancer. In a domain where there is no prior knowledge of small biologically significant data, we demonstrate that careful data-driven methods can infer such significant small data to explain biological mechanisms.

Original languageEnglish (US)
Title of host publicationProceedings - 2016 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2016
EditorsKevin Burrage, Qian Zhu, Yunlong Liu, Tianhai Tian, Yadong Wang, Xiaohua Tony Hu, Qinghua Jiang, Jiangning Song, Shinichi Morishita, Kevin Burrage, Guohua Wang
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages556-563
Number of pages8
ISBN (Electronic)9781509016105
DOIs
StatePublished - Jan 17 2017
Event2016 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2016 - Shenzhen, China
Duration: Dec 15 2016Dec 18 2016

Publication series

NameProceedings - 2016 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2016

Other

Other2016 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2016
Country/TerritoryChina
CityShenzhen
Period12/15/1612/18/16

ASJC Scopus subject areas

  • Genetics
  • Medicine (miscellaneous)
  • Genetics(clinical)
  • Biochemistry, medical
  • Biochemistry
  • Molecular Medicine
  • Health Informatics

Fingerprint

Dive into the research topics of 'Unsupervised single-cell analysis in triple-negative breast cancer: A case study'. Together they form a unique fingerprint.

Cite this