TY - JOUR
T1 - Unique DNA repair gene variations and potential associations with the primary antibody deficiency syndromes igAD and CVID
AU - Offer, Steven M.
AU - Pan-Hammarström, Qiang
AU - Hammarström, Lennart
AU - Harris, Reuben S.
PY - 2010
Y1 - 2010
N2 - Background: Despite considerable effort, the genetic factors responsible for >90% of the antibody deficiency syndromes IgAD and CVID remain elusive. To produce a functionally diverse antibody repertoire B lymphocytes undergo class switch recombination. This process is initiated by AID-catalyzed deamination of cytidine to uridine in switch region DNA. Subsequently, these residues are recognized by the uracil excision enzyme UNG2 or the mismatch repair proteins MutSα (MSH2/MSH6) and MutLα (PMS2/MLH1). Further processing by ubiquitous DNA repair factors is thought to introduce DNA breaks, ultimately leading to class switch recombination and expression of a different antibody isotype. Methodology/Principal Findings: Defects in AID and UNG2 have been shown to result in the primary immunodeficiency hyper-IgM syndrome, leading us to hypothesize that additional, potentially more subtle, DNA repair gene variations may underlie the clinically related antibody deficiencies syndromes IgAD and CVID. In a survey of twenty-seven candidate DNA metabolism genes, markers in MSH2, RAD50, and RAD52 were associated with IgAD/CVID, prompting further investigation into these pathways. Resequencing identified four rare, non-synonymous alleles associated with IgAD/CVID, two in MLH1, one in RAD50, and one in NBS1. One IgAD patient carried heterozygous non-synonymous mutations in MLH1, MSH2, and NBS1. Functional studies revealed that one of the identified mutations, a premature RAD50 stop codon (Q372X), confers increased sensitivity to ionizing radiation. Conclusions: Our results are consistent with a class switch recombination model in which AID-catalyzed uridines are processed by multiple DNA repair pathways. Genetic defects in these DNA repair pathways may contribute to IgAD and CVID.
AB - Background: Despite considerable effort, the genetic factors responsible for >90% of the antibody deficiency syndromes IgAD and CVID remain elusive. To produce a functionally diverse antibody repertoire B lymphocytes undergo class switch recombination. This process is initiated by AID-catalyzed deamination of cytidine to uridine in switch region DNA. Subsequently, these residues are recognized by the uracil excision enzyme UNG2 or the mismatch repair proteins MutSα (MSH2/MSH6) and MutLα (PMS2/MLH1). Further processing by ubiquitous DNA repair factors is thought to introduce DNA breaks, ultimately leading to class switch recombination and expression of a different antibody isotype. Methodology/Principal Findings: Defects in AID and UNG2 have been shown to result in the primary immunodeficiency hyper-IgM syndrome, leading us to hypothesize that additional, potentially more subtle, DNA repair gene variations may underlie the clinically related antibody deficiencies syndromes IgAD and CVID. In a survey of twenty-seven candidate DNA metabolism genes, markers in MSH2, RAD50, and RAD52 were associated with IgAD/CVID, prompting further investigation into these pathways. Resequencing identified four rare, non-synonymous alleles associated with IgAD/CVID, two in MLH1, one in RAD50, and one in NBS1. One IgAD patient carried heterozygous non-synonymous mutations in MLH1, MSH2, and NBS1. Functional studies revealed that one of the identified mutations, a premature RAD50 stop codon (Q372X), confers increased sensitivity to ionizing radiation. Conclusions: Our results are consistent with a class switch recombination model in which AID-catalyzed uridines are processed by multiple DNA repair pathways. Genetic defects in these DNA repair pathways may contribute to IgAD and CVID.
UR - http://www.scopus.com/inward/record.url?scp=77957896955&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77957896955&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0012260
DO - 10.1371/journal.pone.0012260
M3 - Article
C2 - 20805886
AN - SCOPUS:77957896955
SN - 1932-6203
VL - 5
JO - PLoS One
JF - PLoS One
IS - 8
M1 - e12260
ER -