Twenty-four-hour rhythms in plasma concentrations of adenohypophyseal hormones are generated by distinct amplitude and/or frequency modulation of underlying pituitary secretory bursts

Johannes D Veldhuis, Ali Iranmanesh, Michael L. Johnson, German Lizarralde

Research output: Contribution to journalArticle

159 Citations (Scopus)

Abstract

To evaluate the nature of anterior pituitary secretory events in vivo, we have applied a novel waveform-independent deconvolution technique that dissects the underlying secretory behavior of endocrine glands quantitatively from available serial plasma hormone concentration measurements assuming one- or two-compartment elimination kinetics. We used this new tool to ask the following physiological questions. 1) Does the pituitary gland secrete exclusively in randomly dispersed bursts, and/or does a tonic (constitutive) mode of interburst hormone secretion exist? 2) What secretory mechanisms generate the nyctohemeral rhythms in plasma hormone concentrations? Analysis of 24-h plasma concentration profiles of GH, LH, FSH, PRL, TSH, ACTH, and β-endorphin (n = 6-8 men/group) revealed that 1) pituitary secretion in vivo occurs in an exclusively burst-like mode for all hormones except TSH and PRL (for the latter two, a mixed burst and constitutive mode pertained); 2) significant nyctohemeral regulation of secretory burst frequency alone was not demonstrated for any hormone; 3) prominent 24-h variations in secretory burst amplitude alone were delineated for ACTH and LH; 4) TSH, GH, and β-endorphin were both frequency and amplitude controlled; 5) no significant diurnal variations in FSH secretory parameters occurred; and 6) a fixed hormone half-life yielded fits of the 24-h data series with a normalized residual variance of less than 8%. We conclude that the normal human anterior pituitary gland releases its multiple (glyco)protein hormones via punctuated secretory episodes unassociated with tonic basal (constitutive) hormone secretion, except in the case of TSH and PRL. Hormone-specific amplitude and/or frequency control of secretory burst activity over 24 h provides the mechanistic basis for the classically recognized 24-h rhythms in plasma concentrations of adenohypophyseal hormones in men.

Original languageEnglish (US)
Pages (from-to)1616-1623
Number of pages8
JournalJournal of Clinical Endocrinology and Metabolism
Volume71
Issue number6
StatePublished - Dec 1990
Externally publishedYes

Fingerprint

Anterior Pituitary Hormones
Frequency modulation
Circadian Rhythm
Hormones
Plasmas
Endorphins
Adrenocorticotropic Hormone
Endocrine Glands
Anterior Pituitary Gland
Deconvolution
Pituitary Gland
Half-Life

ASJC Scopus subject areas

  • Biochemistry
  • Endocrinology, Diabetes and Metabolism

Cite this

Twenty-four-hour rhythms in plasma concentrations of adenohypophyseal hormones are generated by distinct amplitude and/or frequency modulation of underlying pituitary secretory bursts. / Veldhuis, Johannes D; Iranmanesh, Ali; Johnson, Michael L.; Lizarralde, German.

In: Journal of Clinical Endocrinology and Metabolism, Vol. 71, No. 6, 12.1990, p. 1616-1623.

Research output: Contribution to journalArticle

@article{0e4b59763682463b88a7fb2078b61309,
title = "Twenty-four-hour rhythms in plasma concentrations of adenohypophyseal hormones are generated by distinct amplitude and/or frequency modulation of underlying pituitary secretory bursts",
abstract = "To evaluate the nature of anterior pituitary secretory events in vivo, we have applied a novel waveform-independent deconvolution technique that dissects the underlying secretory behavior of endocrine glands quantitatively from available serial plasma hormone concentration measurements assuming one- or two-compartment elimination kinetics. We used this new tool to ask the following physiological questions. 1) Does the pituitary gland secrete exclusively in randomly dispersed bursts, and/or does a tonic (constitutive) mode of interburst hormone secretion exist? 2) What secretory mechanisms generate the nyctohemeral rhythms in plasma hormone concentrations? Analysis of 24-h plasma concentration profiles of GH, LH, FSH, PRL, TSH, ACTH, and β-endorphin (n = 6-8 men/group) revealed that 1) pituitary secretion in vivo occurs in an exclusively burst-like mode for all hormones except TSH and PRL (for the latter two, a mixed burst and constitutive mode pertained); 2) significant nyctohemeral regulation of secretory burst frequency alone was not demonstrated for any hormone; 3) prominent 24-h variations in secretory burst amplitude alone were delineated for ACTH and LH; 4) TSH, GH, and β-endorphin were both frequency and amplitude controlled; 5) no significant diurnal variations in FSH secretory parameters occurred; and 6) a fixed hormone half-life yielded fits of the 24-h data series with a normalized residual variance of less than 8{\%}. We conclude that the normal human anterior pituitary gland releases its multiple (glyco)protein hormones via punctuated secretory episodes unassociated with tonic basal (constitutive) hormone secretion, except in the case of TSH and PRL. Hormone-specific amplitude and/or frequency control of secretory burst activity over 24 h provides the mechanistic basis for the classically recognized 24-h rhythms in plasma concentrations of adenohypophyseal hormones in men.",
author = "Veldhuis, {Johannes D} and Ali Iranmanesh and Johnson, {Michael L.} and German Lizarralde",
year = "1990",
month = "12",
language = "English (US)",
volume = "71",
pages = "1616--1623",
journal = "Journal of Clinical Endocrinology and Metabolism",
issn = "0021-972X",
publisher = "The Endocrine Society",
number = "6",

}

TY - JOUR

T1 - Twenty-four-hour rhythms in plasma concentrations of adenohypophyseal hormones are generated by distinct amplitude and/or frequency modulation of underlying pituitary secretory bursts

AU - Veldhuis, Johannes D

AU - Iranmanesh, Ali

AU - Johnson, Michael L.

AU - Lizarralde, German

PY - 1990/12

Y1 - 1990/12

N2 - To evaluate the nature of anterior pituitary secretory events in vivo, we have applied a novel waveform-independent deconvolution technique that dissects the underlying secretory behavior of endocrine glands quantitatively from available serial plasma hormone concentration measurements assuming one- or two-compartment elimination kinetics. We used this new tool to ask the following physiological questions. 1) Does the pituitary gland secrete exclusively in randomly dispersed bursts, and/or does a tonic (constitutive) mode of interburst hormone secretion exist? 2) What secretory mechanisms generate the nyctohemeral rhythms in plasma hormone concentrations? Analysis of 24-h plasma concentration profiles of GH, LH, FSH, PRL, TSH, ACTH, and β-endorphin (n = 6-8 men/group) revealed that 1) pituitary secretion in vivo occurs in an exclusively burst-like mode for all hormones except TSH and PRL (for the latter two, a mixed burst and constitutive mode pertained); 2) significant nyctohemeral regulation of secretory burst frequency alone was not demonstrated for any hormone; 3) prominent 24-h variations in secretory burst amplitude alone were delineated for ACTH and LH; 4) TSH, GH, and β-endorphin were both frequency and amplitude controlled; 5) no significant diurnal variations in FSH secretory parameters occurred; and 6) a fixed hormone half-life yielded fits of the 24-h data series with a normalized residual variance of less than 8%. We conclude that the normal human anterior pituitary gland releases its multiple (glyco)protein hormones via punctuated secretory episodes unassociated with tonic basal (constitutive) hormone secretion, except in the case of TSH and PRL. Hormone-specific amplitude and/or frequency control of secretory burst activity over 24 h provides the mechanistic basis for the classically recognized 24-h rhythms in plasma concentrations of adenohypophyseal hormones in men.

AB - To evaluate the nature of anterior pituitary secretory events in vivo, we have applied a novel waveform-independent deconvolution technique that dissects the underlying secretory behavior of endocrine glands quantitatively from available serial plasma hormone concentration measurements assuming one- or two-compartment elimination kinetics. We used this new tool to ask the following physiological questions. 1) Does the pituitary gland secrete exclusively in randomly dispersed bursts, and/or does a tonic (constitutive) mode of interburst hormone secretion exist? 2) What secretory mechanisms generate the nyctohemeral rhythms in plasma hormone concentrations? Analysis of 24-h plasma concentration profiles of GH, LH, FSH, PRL, TSH, ACTH, and β-endorphin (n = 6-8 men/group) revealed that 1) pituitary secretion in vivo occurs in an exclusively burst-like mode for all hormones except TSH and PRL (for the latter two, a mixed burst and constitutive mode pertained); 2) significant nyctohemeral regulation of secretory burst frequency alone was not demonstrated for any hormone; 3) prominent 24-h variations in secretory burst amplitude alone were delineated for ACTH and LH; 4) TSH, GH, and β-endorphin were both frequency and amplitude controlled; 5) no significant diurnal variations in FSH secretory parameters occurred; and 6) a fixed hormone half-life yielded fits of the 24-h data series with a normalized residual variance of less than 8%. We conclude that the normal human anterior pituitary gland releases its multiple (glyco)protein hormones via punctuated secretory episodes unassociated with tonic basal (constitutive) hormone secretion, except in the case of TSH and PRL. Hormone-specific amplitude and/or frequency control of secretory burst activity over 24 h provides the mechanistic basis for the classically recognized 24-h rhythms in plasma concentrations of adenohypophyseal hormones in men.

UR - http://www.scopus.com/inward/record.url?scp=0025696237&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0025696237&partnerID=8YFLogxK

M3 - Article

C2 - 2172282

AN - SCOPUS:0025696237

VL - 71

SP - 1616

EP - 1623

JO - Journal of Clinical Endocrinology and Metabolism

JF - Journal of Clinical Endocrinology and Metabolism

SN - 0021-972X

IS - 6

ER -