Troglitazone, an insulin-sensitizing thiazolidinedione, represses combined stimulation by LH and insulin of de novo androgen biosynthesis by thecal cells in vitro

Johannes D. Veldhuis, George Zhang, James C. Garmey

Research output: Contribution to journalArticlepeer-review

63 Scopus citations

Abstract

Polycystic ovarian syndrome (anovulatory hyperandrogenism) is marked by adolescent onset of systemic hyperinsulinism, oligoovulation, hirsutism, excessive LH and androgen secretion, and variable reduction in fertility. Insulin and LH are believed to act in concert to promote ovarian androgen hypersecretion in this disorder. Administration of troglitazone, an insulin-sensitizing agent and putative PPARγ agonist, can decrease hyperinsulinism, suppress T production, and ameliorate oligoovulation in some women with this endocrinopathy. The present study tests the hypothesis that troglitazone directly inhibits de novo androgen biosynthesis stimulated jointly by LH and insulin in primary cultures of (porcine) thecal cells. We show that troglitazone dose-dependently antagonizes LH/insulin's combined stimulation of androstenedione and T production by thecal cells in vitro. Consistent steroidogenic inhibition of 80-95% was achieved at drug concentrations of 3-6.8 μM (P < 0.001). Exposure of thecal cells to the thiazolidinedione derivative also blocked bihormonally stimulated accumulation of CYP17 (cytochrome P450 17 α-hydroxylase/C17-20 lyase) gene expression, as reflected by decreased accumulation of cognate heterogeneous nuclear RNA and mRNA (by 30-65%; P < 0.05). Moreover, troglitazone suppressed LH/insulin-induced phosphorylation of the 52-kDa immunoprecipitated CYP17 enzyme by 88% (P < 0.001). A putative natural agonist of PPARγ nuclear transcription, 15-deoxy-δ-12,14-prostaglandin J2, also inhibited LH/insulin-driven androstenedione biosynthesis and CYP17 gene expression in thecal cells. In conclusion, a synthetic thiazolidinedione (troglitazone) and a natural ligand of PPARγ (15-deoxy-δ-12,14-prostaglandin J2) effectively impede the concerted stimulation by LH and insulin of in vitro thecal cell androgen production, CYP17 gene expression, and CYP17 protein phosphorylation. This ensemble of inhibitory actions on LH/insulin-stimulated steroidogenesis offers a plausible mechanistic basis for at least part of the observed clinical efficacy of troglitazone in mitigating androgen excess in women with polycystic ovarian syndrome.

Original languageEnglish (US)
Pages (from-to)1129-1133
Number of pages5
JournalJournal of Clinical Endocrinology and Metabolism
Volume87
Issue number3
DOIs
StatePublished - 2002

ASJC Scopus subject areas

  • Endocrinology, Diabetes and Metabolism
  • Biochemistry
  • Endocrinology
  • Clinical Biochemistry
  • Biochemistry, medical

Fingerprint

Dive into the research topics of 'Troglitazone, an insulin-sensitizing thiazolidinedione, represses combined stimulation by LH and insulin of de novo androgen biosynthesis by thecal cells in vitro'. Together they form a unique fingerprint.

Cite this