Triptans and CNS side-effects: Pharmacokinetic and metabolic mechanisms

D. W. Dodick, V. Martin

Research output: Contribution to journalReview articlepeer-review

87 Scopus citations

Abstract

Triptans are the treatment of choice for acute migraine. While seemingly a homogenous group of drugs, results from a meta-analysis reveal significant differences in efficacy and tolerability among oral triptans. The incidence of drug-related central nervous system (CNS) side-effects with some triptans is as high as 15% and may be associated with functional impairment and reduced productivity. The occurrence of adverse events associated with triptans in general, and CNS side-effects in particular, may lead to a delay in initiating or even avoidance of an otherwise effective treatment. Potential explanations for differences among triptans in the incidence of CNS side-effects may relate to pharmacological and pharmacokinetic differences, including receptor binding, lipophilicity, and the presence of active metabolites. Of the triptans reviewed, at clinically relevant doses, almotriptan 12.5 mg, naratriptan 2.5 mg and sumatriptan 50 mg had the lowest incidence of CNS side-effects, while eletriptan 40 and 80 mg, rizatriptan 10 mg and zolmitriptan 2.5 and 5 mg had the highest incidence. The most likely explanations for the differences in CNS side-effects among triptans are the presence of active metabolites and high lipophilicity of the parent compound and active metabolites. Eletriptan, rizatriptan and zolmitriptan have active metabolites, while lipophilicity is lowest for almotriptan and sumatriptan. If CNS side-effects are a clinically relevant concern in the individual patient, use of a triptan with a low incidence of CNS side-effects may offer the potential for earlier initiation of treatment and more effective outcomes.

Original languageEnglish (US)
Pages (from-to)417-424
Number of pages8
JournalCephalalgia
Volume24
Issue number6
DOIs
StatePublished - Jun 2004

Keywords

  • CNS
  • Side effects
  • Triptans

ASJC Scopus subject areas

  • Clinical Neurology

Fingerprint

Dive into the research topics of 'Triptans and CNS side-effects: Pharmacokinetic and metabolic mechanisms'. Together they form a unique fingerprint.

Cite this