Trinitrophenylated reactive lysine residue in myosin detects lever arm movement during the consecutive steps of ATP hydrolysis

Katalin Ajtai, Y. Michael Peyser, Sungjo Park, Thomas P Burghardt, Andras Muhlrad

Research output: Contribution to journalArticle

24 Citations (Scopus)

Abstract

Trinitrophenylation of the reactive lysine (Lys84) in skeletal myosin subfragment 1 (S1) introduces a chiral probe (TNP) into an interface of the catalytic and lever arm domains of S1 [Muhlrad (1977) Biochim. Biophys. Acta 493, 154-166]. Characteristics of the TNP absorption and circular dichroism (CD) spectra in TNP-modified S1 (TNP-Lys84-S1), and the Lys84 trinitrophenylation rate in native S1, indicate a one-to-one correspondence between ATPase transients and trapped phosphate analogues. Phosphate analogue-induced structures of TNP-Lys84-S1 were modeled using the crystallographic coordinates of S1 [Rayment et al. (1993) Science 261, 5058] with swivels at Gly699 and Gly710 to approximate conformational changes during ATPase. The CD and absorption spectral characteristics of the model structures were compared to those observed for analogue-induced structures. The model calculations, first tested on a trinitrophenylated hexapeptide with known structure, were applied to TNP-Lys84-S1. They showed that ATP binding initiates swiveling at Gly699 and that swiveling at both Gly710 and Gly699 accompanied ATP splitting just prior to product release. The computed lever arm trajectory during ATPase suggests (i) a plausible mechanism for the nucleotide-induced inhibition of Lys84 trinitrophenylation, and (ii) trinitrophenylation-induced changes in S1 Mg2+- and K+-EDTA ATPase are from collision of the lever arm with TNP at Lys84. TNP is a site-specific structural perturbant of S1 and a chiral reporter group for the effect of Lys84 modification on dynamic S1 structure. As such, TNP-Lys84-S1 is equivalent to a genetically engineered mutant with intrinsic sensitivity to structure local to the modified residue.

Original languageEnglish (US)
Pages (from-to)6428-6440
Number of pages13
JournalBiochemistry
Volume38
Issue number20
DOIs
StatePublished - May 18 1999

Fingerprint

Myosins
Lysine
Adenosine Triphosphatases
Hydrolysis
Adenosine Triphosphate
Circular Dichroism
Phosphates
Myosin Subfragments
Model structures
Nucleotides
Trajectories

ASJC Scopus subject areas

  • Biochemistry

Cite this

Trinitrophenylated reactive lysine residue in myosin detects lever arm movement during the consecutive steps of ATP hydrolysis. / Ajtai, Katalin; Peyser, Y. Michael; Park, Sungjo; Burghardt, Thomas P; Muhlrad, Andras.

In: Biochemistry, Vol. 38, No. 20, 18.05.1999, p. 6428-6440.

Research output: Contribution to journalArticle

Ajtai, Katalin ; Peyser, Y. Michael ; Park, Sungjo ; Burghardt, Thomas P ; Muhlrad, Andras. / Trinitrophenylated reactive lysine residue in myosin detects lever arm movement during the consecutive steps of ATP hydrolysis. In: Biochemistry. 1999 ; Vol. 38, No. 20. pp. 6428-6440.
@article{25621d9247fe450281625b0e5fe8f77d,
title = "Trinitrophenylated reactive lysine residue in myosin detects lever arm movement during the consecutive steps of ATP hydrolysis",
abstract = "Trinitrophenylation of the reactive lysine (Lys84) in skeletal myosin subfragment 1 (S1) introduces a chiral probe (TNP) into an interface of the catalytic and lever arm domains of S1 [Muhlrad (1977) Biochim. Biophys. Acta 493, 154-166]. Characteristics of the TNP absorption and circular dichroism (CD) spectra in TNP-modified S1 (TNP-Lys84-S1), and the Lys84 trinitrophenylation rate in native S1, indicate a one-to-one correspondence between ATPase transients and trapped phosphate analogues. Phosphate analogue-induced structures of TNP-Lys84-S1 were modeled using the crystallographic coordinates of S1 [Rayment et al. (1993) Science 261, 5058] with swivels at Gly699 and Gly710 to approximate conformational changes during ATPase. The CD and absorption spectral characteristics of the model structures were compared to those observed for analogue-induced structures. The model calculations, first tested on a trinitrophenylated hexapeptide with known structure, were applied to TNP-Lys84-S1. They showed that ATP binding initiates swiveling at Gly699 and that swiveling at both Gly710 and Gly699 accompanied ATP splitting just prior to product release. The computed lever arm trajectory during ATPase suggests (i) a plausible mechanism for the nucleotide-induced inhibition of Lys84 trinitrophenylation, and (ii) trinitrophenylation-induced changes in S1 Mg2+- and K+-EDTA ATPase are from collision of the lever arm with TNP at Lys84. TNP is a site-specific structural perturbant of S1 and a chiral reporter group for the effect of Lys84 modification on dynamic S1 structure. As such, TNP-Lys84-S1 is equivalent to a genetically engineered mutant with intrinsic sensitivity to structure local to the modified residue.",
author = "Katalin Ajtai and Peyser, {Y. Michael} and Sungjo Park and Burghardt, {Thomas P} and Andras Muhlrad",
year = "1999",
month = "5",
day = "18",
doi = "10.1021/bi990149r",
language = "English (US)",
volume = "38",
pages = "6428--6440",
journal = "Biochemistry",
issn = "0006-2960",
publisher = "American Chemical Society",
number = "20",

}

TY - JOUR

T1 - Trinitrophenylated reactive lysine residue in myosin detects lever arm movement during the consecutive steps of ATP hydrolysis

AU - Ajtai, Katalin

AU - Peyser, Y. Michael

AU - Park, Sungjo

AU - Burghardt, Thomas P

AU - Muhlrad, Andras

PY - 1999/5/18

Y1 - 1999/5/18

N2 - Trinitrophenylation of the reactive lysine (Lys84) in skeletal myosin subfragment 1 (S1) introduces a chiral probe (TNP) into an interface of the catalytic and lever arm domains of S1 [Muhlrad (1977) Biochim. Biophys. Acta 493, 154-166]. Characteristics of the TNP absorption and circular dichroism (CD) spectra in TNP-modified S1 (TNP-Lys84-S1), and the Lys84 trinitrophenylation rate in native S1, indicate a one-to-one correspondence between ATPase transients and trapped phosphate analogues. Phosphate analogue-induced structures of TNP-Lys84-S1 were modeled using the crystallographic coordinates of S1 [Rayment et al. (1993) Science 261, 5058] with swivels at Gly699 and Gly710 to approximate conformational changes during ATPase. The CD and absorption spectral characteristics of the model structures were compared to those observed for analogue-induced structures. The model calculations, first tested on a trinitrophenylated hexapeptide with known structure, were applied to TNP-Lys84-S1. They showed that ATP binding initiates swiveling at Gly699 and that swiveling at both Gly710 and Gly699 accompanied ATP splitting just prior to product release. The computed lever arm trajectory during ATPase suggests (i) a plausible mechanism for the nucleotide-induced inhibition of Lys84 trinitrophenylation, and (ii) trinitrophenylation-induced changes in S1 Mg2+- and K+-EDTA ATPase are from collision of the lever arm with TNP at Lys84. TNP is a site-specific structural perturbant of S1 and a chiral reporter group for the effect of Lys84 modification on dynamic S1 structure. As such, TNP-Lys84-S1 is equivalent to a genetically engineered mutant with intrinsic sensitivity to structure local to the modified residue.

AB - Trinitrophenylation of the reactive lysine (Lys84) in skeletal myosin subfragment 1 (S1) introduces a chiral probe (TNP) into an interface of the catalytic and lever arm domains of S1 [Muhlrad (1977) Biochim. Biophys. Acta 493, 154-166]. Characteristics of the TNP absorption and circular dichroism (CD) spectra in TNP-modified S1 (TNP-Lys84-S1), and the Lys84 trinitrophenylation rate in native S1, indicate a one-to-one correspondence between ATPase transients and trapped phosphate analogues. Phosphate analogue-induced structures of TNP-Lys84-S1 were modeled using the crystallographic coordinates of S1 [Rayment et al. (1993) Science 261, 5058] with swivels at Gly699 and Gly710 to approximate conformational changes during ATPase. The CD and absorption spectral characteristics of the model structures were compared to those observed for analogue-induced structures. The model calculations, first tested on a trinitrophenylated hexapeptide with known structure, were applied to TNP-Lys84-S1. They showed that ATP binding initiates swiveling at Gly699 and that swiveling at both Gly710 and Gly699 accompanied ATP splitting just prior to product release. The computed lever arm trajectory during ATPase suggests (i) a plausible mechanism for the nucleotide-induced inhibition of Lys84 trinitrophenylation, and (ii) trinitrophenylation-induced changes in S1 Mg2+- and K+-EDTA ATPase are from collision of the lever arm with TNP at Lys84. TNP is a site-specific structural perturbant of S1 and a chiral reporter group for the effect of Lys84 modification on dynamic S1 structure. As such, TNP-Lys84-S1 is equivalent to a genetically engineered mutant with intrinsic sensitivity to structure local to the modified residue.

UR - http://www.scopus.com/inward/record.url?scp=0033580652&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0033580652&partnerID=8YFLogxK

U2 - 10.1021/bi990149r

DO - 10.1021/bi990149r

M3 - Article

VL - 38

SP - 6428

EP - 6440

JO - Biochemistry

JF - Biochemistry

SN - 0006-2960

IS - 20

ER -