Trajectories of plasma IGF-1, IGFBP-3, and their ratio in the Mayo Clinic Study of Aging

Alexandra M.V. Wennberg, Clinton E. Hagen, Ronald Carl Petersen, Michelle M Mielke

Research output: Contribution to journalArticle

4 Citations (Scopus)

Abstract

Insulin-like growth factor 1 (IGF-1) has been associated with osteoporosis, cardiovascular disease, cancer, neurodegenerative diseases, and mortality in middle and older aged adults. Cross-sectionally, IGF-1 decreases with age and levels of IGF-1 are markedly different between individuals. However, little is known about intra-individual trajectories of IGF-1. We examined baseline and serial measures of plasma total IGF-1, IGF binding protein (IGFBP)-3, and their ratio, which is a proxy for bioavailable IGF-1, among 1618 adults, aged 50–95, enrolled in the Mayo Clinic Study of Aging. At baseline, IGF-1 and IGFBP-3 were strongly correlated (r = 0.62, p < 0.001). Total IGF-1 and IGFBP-3 decreased across age, while the ratio of IGF-1/IGFBP-3 increased across age. This pattern was consistent across ages at baseline and intra-individually over an average 2.3 years follow-up (range = 10 months–5.6 years). In age-adjusted linear regression models, baseline levels of total IGF-1, IGFBP-3, and IGF-1/IGFBP-3 varied by participant characteristics (sex, BMI, gait speed), medical comorbidities (Charlson comorbidity index score, hypertension, diabetes, and cardiovascular disease), and hormone replacement therapy use in women. High interclass correlation coefficients (ICCs) suggest little intra-individual variability in levels of total IGF-1 (ICC = 0.84), IGFBP-3 (ICC = 0.88), and IGF-1/IGFBP-3 (ICC = 0.81) over time. In mixed effects models that specified age as a time scale, men showed greater decreases in total IGF-1 and IGFBP-3 with age, while more comorbidities and decreasing gait speed were associated with increasing IGFBP-3. In sex-stratified models, trajectories of total IGF-1, IGFBP-3, and IGF-1/IGFBP-3, as a function of participant demographics, health characteristics, and medical conditions, differed between men and women. These results suggest that change in levels of plasma total IGF-1, IGFBP-3, and IGF-1/IGFBP-3 are associated with demographics, health characteristics, and medical conditions, and that the trajectories of change differ by sex. Future research should consider how IGF-1 and IGFBP-3 might be useful in research or clinic, paying particular attention to how sex may impact levels as a function of demographics, health characteristics, and medical conditions.

Original languageEnglish (US)
Pages (from-to)67-73
Number of pages7
JournalExperimental Gerontology
Volume106
DOIs
StatePublished - Jun 1 2018

Fingerprint

Insulin-Like Growth Factor Binding Protein 3
Somatomedins
Aging of materials
Trajectories
Plasmas
Insulin
Health
Comorbidity
Demography
Neurodegenerative diseases
Linear Models
Cardiovascular Diseases
Medical problems
Linear regression

Keywords

  • Age
  • Insulin-like growth factor 1
  • Insulin-like growth factor binding protein 3

ASJC Scopus subject areas

  • Biochemistry
  • Aging
  • Molecular Biology
  • Genetics
  • Endocrinology
  • Cell Biology

Cite this

Trajectories of plasma IGF-1, IGFBP-3, and their ratio in the Mayo Clinic Study of Aging. / Wennberg, Alexandra M.V.; Hagen, Clinton E.; Petersen, Ronald Carl; Mielke, Michelle M.

In: Experimental Gerontology, Vol. 106, 01.06.2018, p. 67-73.

Research output: Contribution to journalArticle

@article{7739256ad2ba4b73a785654592353594,
title = "Trajectories of plasma IGF-1, IGFBP-3, and their ratio in the Mayo Clinic Study of Aging",
abstract = "Insulin-like growth factor 1 (IGF-1) has been associated with osteoporosis, cardiovascular disease, cancer, neurodegenerative diseases, and mortality in middle and older aged adults. Cross-sectionally, IGF-1 decreases with age and levels of IGF-1 are markedly different between individuals. However, little is known about intra-individual trajectories of IGF-1. We examined baseline and serial measures of plasma total IGF-1, IGF binding protein (IGFBP)-3, and their ratio, which is a proxy for bioavailable IGF-1, among 1618 adults, aged 50–95, enrolled in the Mayo Clinic Study of Aging. At baseline, IGF-1 and IGFBP-3 were strongly correlated (r = 0.62, p < 0.001). Total IGF-1 and IGFBP-3 decreased across age, while the ratio of IGF-1/IGFBP-3 increased across age. This pattern was consistent across ages at baseline and intra-individually over an average 2.3 years follow-up (range = 10 months–5.6 years). In age-adjusted linear regression models, baseline levels of total IGF-1, IGFBP-3, and IGF-1/IGFBP-3 varied by participant characteristics (sex, BMI, gait speed), medical comorbidities (Charlson comorbidity index score, hypertension, diabetes, and cardiovascular disease), and hormone replacement therapy use in women. High interclass correlation coefficients (ICCs) suggest little intra-individual variability in levels of total IGF-1 (ICC = 0.84), IGFBP-3 (ICC = 0.88), and IGF-1/IGFBP-3 (ICC = 0.81) over time. In mixed effects models that specified age as a time scale, men showed greater decreases in total IGF-1 and IGFBP-3 with age, while more comorbidities and decreasing gait speed were associated with increasing IGFBP-3. In sex-stratified models, trajectories of total IGF-1, IGFBP-3, and IGF-1/IGFBP-3, as a function of participant demographics, health characteristics, and medical conditions, differed between men and women. These results suggest that change in levels of plasma total IGF-1, IGFBP-3, and IGF-1/IGFBP-3 are associated with demographics, health characteristics, and medical conditions, and that the trajectories of change differ by sex. Future research should consider how IGF-1 and IGFBP-3 might be useful in research or clinic, paying particular attention to how sex may impact levels as a function of demographics, health characteristics, and medical conditions.",
keywords = "Age, Insulin-like growth factor 1, Insulin-like growth factor binding protein 3",
author = "Wennberg, {Alexandra M.V.} and Hagen, {Clinton E.} and Petersen, {Ronald Carl} and Mielke, {Michelle M}",
year = "2018",
month = "6",
day = "1",
doi = "10.1016/j.exger.2018.02.015",
language = "English (US)",
volume = "106",
pages = "67--73",
journal = "Experimental Gerontology",
issn = "0531-5565",
publisher = "Elsevier Inc.",

}

TY - JOUR

T1 - Trajectories of plasma IGF-1, IGFBP-3, and their ratio in the Mayo Clinic Study of Aging

AU - Wennberg, Alexandra M.V.

AU - Hagen, Clinton E.

AU - Petersen, Ronald Carl

AU - Mielke, Michelle M

PY - 2018/6/1

Y1 - 2018/6/1

N2 - Insulin-like growth factor 1 (IGF-1) has been associated with osteoporosis, cardiovascular disease, cancer, neurodegenerative diseases, and mortality in middle and older aged adults. Cross-sectionally, IGF-1 decreases with age and levels of IGF-1 are markedly different between individuals. However, little is known about intra-individual trajectories of IGF-1. We examined baseline and serial measures of plasma total IGF-1, IGF binding protein (IGFBP)-3, and their ratio, which is a proxy for bioavailable IGF-1, among 1618 adults, aged 50–95, enrolled in the Mayo Clinic Study of Aging. At baseline, IGF-1 and IGFBP-3 were strongly correlated (r = 0.62, p < 0.001). Total IGF-1 and IGFBP-3 decreased across age, while the ratio of IGF-1/IGFBP-3 increased across age. This pattern was consistent across ages at baseline and intra-individually over an average 2.3 years follow-up (range = 10 months–5.6 years). In age-adjusted linear regression models, baseline levels of total IGF-1, IGFBP-3, and IGF-1/IGFBP-3 varied by participant characteristics (sex, BMI, gait speed), medical comorbidities (Charlson comorbidity index score, hypertension, diabetes, and cardiovascular disease), and hormone replacement therapy use in women. High interclass correlation coefficients (ICCs) suggest little intra-individual variability in levels of total IGF-1 (ICC = 0.84), IGFBP-3 (ICC = 0.88), and IGF-1/IGFBP-3 (ICC = 0.81) over time. In mixed effects models that specified age as a time scale, men showed greater decreases in total IGF-1 and IGFBP-3 with age, while more comorbidities and decreasing gait speed were associated with increasing IGFBP-3. In sex-stratified models, trajectories of total IGF-1, IGFBP-3, and IGF-1/IGFBP-3, as a function of participant demographics, health characteristics, and medical conditions, differed between men and women. These results suggest that change in levels of plasma total IGF-1, IGFBP-3, and IGF-1/IGFBP-3 are associated with demographics, health characteristics, and medical conditions, and that the trajectories of change differ by sex. Future research should consider how IGF-1 and IGFBP-3 might be useful in research or clinic, paying particular attention to how sex may impact levels as a function of demographics, health characteristics, and medical conditions.

AB - Insulin-like growth factor 1 (IGF-1) has been associated with osteoporosis, cardiovascular disease, cancer, neurodegenerative diseases, and mortality in middle and older aged adults. Cross-sectionally, IGF-1 decreases with age and levels of IGF-1 are markedly different between individuals. However, little is known about intra-individual trajectories of IGF-1. We examined baseline and serial measures of plasma total IGF-1, IGF binding protein (IGFBP)-3, and their ratio, which is a proxy for bioavailable IGF-1, among 1618 adults, aged 50–95, enrolled in the Mayo Clinic Study of Aging. At baseline, IGF-1 and IGFBP-3 were strongly correlated (r = 0.62, p < 0.001). Total IGF-1 and IGFBP-3 decreased across age, while the ratio of IGF-1/IGFBP-3 increased across age. This pattern was consistent across ages at baseline and intra-individually over an average 2.3 years follow-up (range = 10 months–5.6 years). In age-adjusted linear regression models, baseline levels of total IGF-1, IGFBP-3, and IGF-1/IGFBP-3 varied by participant characteristics (sex, BMI, gait speed), medical comorbidities (Charlson comorbidity index score, hypertension, diabetes, and cardiovascular disease), and hormone replacement therapy use in women. High interclass correlation coefficients (ICCs) suggest little intra-individual variability in levels of total IGF-1 (ICC = 0.84), IGFBP-3 (ICC = 0.88), and IGF-1/IGFBP-3 (ICC = 0.81) over time. In mixed effects models that specified age as a time scale, men showed greater decreases in total IGF-1 and IGFBP-3 with age, while more comorbidities and decreasing gait speed were associated with increasing IGFBP-3. In sex-stratified models, trajectories of total IGF-1, IGFBP-3, and IGF-1/IGFBP-3, as a function of participant demographics, health characteristics, and medical conditions, differed between men and women. These results suggest that change in levels of plasma total IGF-1, IGFBP-3, and IGF-1/IGFBP-3 are associated with demographics, health characteristics, and medical conditions, and that the trajectories of change differ by sex. Future research should consider how IGF-1 and IGFBP-3 might be useful in research or clinic, paying particular attention to how sex may impact levels as a function of demographics, health characteristics, and medical conditions.

KW - Age

KW - Insulin-like growth factor 1

KW - Insulin-like growth factor binding protein 3

UR - http://www.scopus.com/inward/record.url?scp=85043368026&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85043368026&partnerID=8YFLogxK

U2 - 10.1016/j.exger.2018.02.015

DO - 10.1016/j.exger.2018.02.015

M3 - Article

C2 - 29474865

AN - SCOPUS:85043368026

VL - 106

SP - 67

EP - 73

JO - Experimental Gerontology

JF - Experimental Gerontology

SN - 0531-5565

ER -