Towards real-time QRS feature extraction for wearable monitors

Lukas Smital, Clifton R Haider, Pavel Leinveber, Pavel Jurak, Barry Kent Gilbert, David R. Holmes III

Research output: Chapter in Book/Report/Conference proceedingConference contribution

6 Scopus citations

Abstract

The ability to generate computationally compact ECG analysis algorithms is of interest in the field of wearable physiologic monitors. Such remote monitors necessarily have limited on-board energy storage and therefore lack the computational power and physical memory often required for academic study of physiologic waveforms. Herein we evaluate a set of algorithms with markedly different computation and memory footprints useful in extracting QRS complexes from synthetically generated noisy and measured ECG signals. A small memory and computational footprint Short Time Fourier Transform ECG analysis algorithm is demonstrated to have similar sensitivity and specificity to a more complex but highly accurate Stockwell Transform.

Original languageEnglish (US)
Title of host publication2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3519-3522
Number of pages4
Volume2016-October
ISBN (Electronic)9781457702204
DOIs
StatePublished - Oct 13 2016
Event38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016 - Orlando, United States
Duration: Aug 16 2016Aug 20 2016

Other

Other38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2016
CountryUnited States
CityOrlando
Period8/16/168/20/16

ASJC Scopus subject areas

  • Signal Processing
  • Biomedical Engineering
  • Computer Vision and Pattern Recognition
  • Health Informatics

Fingerprint Dive into the research topics of 'Towards real-time QRS feature extraction for wearable monitors'. Together they form a unique fingerprint.

Cite this