The Src homology 2 domain of Rin1 mediates its binding to the epidermal growth factor receptor and regulates receptor endocytosis

M. Alejandro Barbieri, Chen Kong, Pin I. Chen, Bruce F. Horazdovsky, Philip D. Stahl

Research output: Contribution to journalArticlepeer-review

70 Scopus citations

Abstract

Activated epidermal growth factor receptors (EGFRs) recruit intracellular proteins that mediate receptor signaling and endocytic trafficking. Rin1, a multifunctional protein, has been shown to regulate EGFR internalization (1). Here we show that EGF stimulation induces a specific, rapid, and transient membrane recruitment of Rin1 and that recruitment is dependent on the Src homology 2 (SH2) domain of Rin1. Immunoprecipitation of EGFR is accompanied by co-immunoprecipitation of Rin1 in a time- and ligand-dependent manner. Association of Rin1 and specifically the SH2 domain of Rin1 with the EGFR was dependent on tyrosine phosphorylation of the intracellular domain of the EGFR. The recruitment of Rin1, observed by light microscopy, indicated that although initially cytosolic, Rin1 was recruited to both plasma membrane and endosomes following EGF addition. Moreover, the expression of the SH2 domain of Rin1 substantially impaired the internalization of EGF without affecting internalization of transferrin. Finally, we found that Rin1 co-immunoprecipitated with a number of tyrosine kinase receptors but not with cargo endocytic receptors. These results indicate that Rin1 provides a link via its SH2 domain between activated tyrosine kinase receptors and the endocytic pathway through the recruitment and activation of Rab5a.

Original languageEnglish (US)
Pages (from-to)32027-32036
Number of pages10
JournalJournal of Biological Chemistry
Volume278
Issue number34
DOIs
StatePublished - Aug 22 2003

ASJC Scopus subject areas

  • Biochemistry
  • Molecular Biology
  • Cell Biology

Fingerprint Dive into the research topics of 'The Src homology 2 domain of Rin1 mediates its binding to the epidermal growth factor receptor and regulates receptor endocytosis'. Together they form a unique fingerprint.

Cite this