The smooth muscle myosin seven amino acid heavy chain insert's kinetic role in the crossbridge cycle for mouse bladder

Peter Karagiannis, Gopal J. Babu, Muthu Periasamy, Frank V. Brozovich

Research output: Contribution to journalReview article

19 Scopus citations

Abstract

The seven amino acid insert in the smooth muscle myosin heavy chain is thought to regulate the kinetics of contraction, contributing to the differences between fast and slow smooth muscle. The effects of this insert on force and stiffness were determined in bladder tissue of a transgenic mouse line expressing the insert SMB at one of three levels: an SMB wild type (+/+), an SMA homozygous type (-/-) and a heterozygous type (+/-). For skinned muscle, an increase in MgADP or inorganic phosphate (Pi) should shift the distribution of crossbridges in the actomyosin ATPase (AMATPase) to increase the relative population of the crossbridge state prior to ADP release and Pi release, respectively. Exogenous ADP increased force and stiffness in a manner consistent with increasing the Ca2+ concentration in both the +/+ and +/- mouse types. However, the -/- type showed a significantly greater increase in force than in stiffness suggesting that immediately prior to ADP release, the AMATPase either has an additional force producing isomerization state or a slower ADP dissociation rate for the -/- type compared to the +/+ or +/- types. Exogenous Pi led to a significantly greater decrease in stiffness than in force for all three mouse types suggesting that there is a force producing state prior to Pi release. In addition, the increase in Pi showed similar changes in the +/+ and -/- types whereas in the +/- type the decreases in both force and stiffness were greater than the other two mouse types indicating that the insert can affect the cooperativity between myosin heads. In conclusion, the seven amino acid insert modulates the kinetics and/or states of the AMATPase, which could lead to differences in the kinetics of contraction between fast and slow smooth muscle.

Original languageEnglish (US)
Pages (from-to)463-473
Number of pages11
JournalJournal of Physiology
Volume547
Issue number2
DOIs
StatePublished - Mar 1 2003

    Fingerprint

ASJC Scopus subject areas

  • Physiology

Cite this