The role of protein solubilization in antigen removal from xenogeneic tissue for heart valve tissue engineering

Maelene L. Wong, J. Kent Leach, Kyriacos A. Athanasiou, Leigh G. Griffiths

Research output: Contribution to journalArticlepeer-review

32 Scopus citations

Abstract

Decellularization techniques have been developed in an attempt to reduce the antigenicity of xenogeneic biomaterials, a critical barrier in their use as tissue engineering scaffolds. However, numerous studies have demonstrated inadequate removal and subsequent persistence of antigens in the biomaterial following decellularization, resulting in an immune response upon implantation. Thus, methods to enhance antigen removal (AR) are critical for the use of xenogeneic biomaterials in tissue engineering and regenerative medicine. In the present study, AR methods incorporating protein solubilization principles were investigated for their ability to reduce antigenicity of bovine pericardium (BP) for heart valve tissue engineering. Bovine pericardium following AR (BP-AR) was assessed for residual antigenicity, tensile properties, and extracellular matrix composition. Increasing protein solubility during AR significantly decreased the residual antigenicity of BP-AR-by an additional 80% compared to hypotonic solution or 60% compared to 0.1% (w/v) SDS decellularization methods. Moreover, solubilizing agents have a dominant effect on reducing the level of residual antigenicity of BP-AR beyond that achieved by AR additives alone. Tested AR methods did not compromise the tensile properties of BP-AR compared to native BP. Furthermore, residual cell nuclei did not correlate to residual antigenicity, demonstrating that residual nuclei counts may not be an appropriate indicator of successful AR. In conclusion, AR strategies promoting protein solubilization significantly reduced residual antigens compared to decellularization methods without compromising biomaterial functional properties. This study demonstrates the importance of solubilizing protein antigens for their removal in the generation of xenogeneic scaffolds.

Original languageEnglish (US)
Pages (from-to)8129-8138
Number of pages10
JournalBiomaterials
Volume32
Issue number32
DOIs
StatePublished - Nov 2011

Keywords

  • Antigen removal
  • Decellularization
  • Extracellular matrix
  • Heart valve tissue engineering
  • Xenogeneic scaffold

ASJC Scopus subject areas

  • Mechanics of Materials
  • Ceramics and Composites
  • Bioengineering
  • Biophysics
  • Biomaterials

Fingerprint

Dive into the research topics of 'The role of protein solubilization in antigen removal from xenogeneic tissue for heart valve tissue engineering'. Together they form a unique fingerprint.

Cite this