The proline-rich domain of dynamin-2 is responsible for dynamin-dependent in vitro potentiation of endothelial nitric-oxide synthase activity via selective effects on reductase domain function

Sheng Cao, Janet Yao, Vijay Shah

Research output: Contribution to journalArticle

45 Citations (Scopus)

Abstract

The GTPase dynamin-2 (dyn-2) binds and positively regulates the nitric oxide-generating enzyme, endothelial nitric-oxide synthase (eNOS) (Cao, S., Yao, Y., McCabe, T., Yao, Q., Katusic, Z., Sessa, W., and Shah, V. (2001) J. Biol. Chem. 276, 14249-14256). Here we demonstrate, using purified proteins, that this occurs through a selective influence of the dyn-2 proline-rich domain (dyn-2 PRD) on the eNOS reductase domain. In vitro studies demonstrate that dyn-2 PRD fused with glutathione S-transferase (GST) binds recombinant eNOS protein specifically and with binding kinetics comparable with that observed between dyn-2 full-length and eNOS. Additionally, GST-dyn-2 PRD binds the in vitro transcribed 35S-eNOS reductase domain but not the 35S-eNOS oxygenase domain. Furthermore GST-dyn-2 PRD binds a 35S-labeled eNOS reductase domain fragment (amino acids 645-850) that partially overlaps with the FAD binding domain of eNOS. A recombinant form of the SH3-containing protein Fyn competes the binding of recombinant eNOS protein with dyn-2 PRD, thereby implicating the SH3-like region contained within this reductase domain fragment as the dyn-2 binding region. Mammalian two-hybrid screen corroborates these interactions in cells as well. Functional studies demonstrate that dyn-2 PRD selectively potentiates eNOS activity in a concentration-dependent manner in an order of magnitude similar to that observed with dyn-2 full-length and in a manner that requires calmodulin. Although dyn-2 PRD does not influence eNOS oxygenase domain function or ferricyanide reduction, it does potentiate the ability of recombinant eNOS to reduce cytochrome c, supporting an influence of dyn-2 PRD on electron transfer between FAD and FMN. (These data indicate that the binding domains of dyn-2 and eNOS reside within the dyn-2 PRD domain and the FAD binding region of the eNOS reductase domains, respectively, and that dyn-2 PRD is sufficient to mediate dyn-2-dependent potentiation of eNOS activity, at least in part, by potentiating electron transfer.).

Original languageEnglish (US)
Pages (from-to)5894-5901
Number of pages8
JournalJournal of Biological Chemistry
Volume278
Issue number8
DOIs
StatePublished - Feb 21 2003

Fingerprint

Dynamin II
Dynamins
Nitric Oxide Synthase Type III
Proline
Oxidoreductases
Flavin-Adenine Dinucleotide
Glutathione Transferase
Oxygenases
In Vitro Techniques
Proteins
Electrons
Flavin Mononucleotide

ASJC Scopus subject areas

  • Biochemistry

Cite this

@article{b4720887ba4642df82edae71d1e8e477,
title = "The proline-rich domain of dynamin-2 is responsible for dynamin-dependent in vitro potentiation of endothelial nitric-oxide synthase activity via selective effects on reductase domain function",
abstract = "The GTPase dynamin-2 (dyn-2) binds and positively regulates the nitric oxide-generating enzyme, endothelial nitric-oxide synthase (eNOS) (Cao, S., Yao, Y., McCabe, T., Yao, Q., Katusic, Z., Sessa, W., and Shah, V. (2001) J. Biol. Chem. 276, 14249-14256). Here we demonstrate, using purified proteins, that this occurs through a selective influence of the dyn-2 proline-rich domain (dyn-2 PRD) on the eNOS reductase domain. In vitro studies demonstrate that dyn-2 PRD fused with glutathione S-transferase (GST) binds recombinant eNOS protein specifically and with binding kinetics comparable with that observed between dyn-2 full-length and eNOS. Additionally, GST-dyn-2 PRD binds the in vitro transcribed 35S-eNOS reductase domain but not the 35S-eNOS oxygenase domain. Furthermore GST-dyn-2 PRD binds a 35S-labeled eNOS reductase domain fragment (amino acids 645-850) that partially overlaps with the FAD binding domain of eNOS. A recombinant form of the SH3-containing protein Fyn competes the binding of recombinant eNOS protein with dyn-2 PRD, thereby implicating the SH3-like region contained within this reductase domain fragment as the dyn-2 binding region. Mammalian two-hybrid screen corroborates these interactions in cells as well. Functional studies demonstrate that dyn-2 PRD selectively potentiates eNOS activity in a concentration-dependent manner in an order of magnitude similar to that observed with dyn-2 full-length and in a manner that requires calmodulin. Although dyn-2 PRD does not influence eNOS oxygenase domain function or ferricyanide reduction, it does potentiate the ability of recombinant eNOS to reduce cytochrome c, supporting an influence of dyn-2 PRD on electron transfer between FAD and FMN. (These data indicate that the binding domains of dyn-2 and eNOS reside within the dyn-2 PRD domain and the FAD binding region of the eNOS reductase domains, respectively, and that dyn-2 PRD is sufficient to mediate dyn-2-dependent potentiation of eNOS activity, at least in part, by potentiating electron transfer.).",
author = "Sheng Cao and Janet Yao and Vijay Shah",
year = "2003",
month = "2",
day = "21",
doi = "10.1074/jbc.M212546200",
language = "English (US)",
volume = "278",
pages = "5894--5901",
journal = "Journal of Biological Chemistry",
issn = "0021-9258",
publisher = "American Society for Biochemistry and Molecular Biology Inc.",
number = "8",

}

TY - JOUR

T1 - The proline-rich domain of dynamin-2 is responsible for dynamin-dependent in vitro potentiation of endothelial nitric-oxide synthase activity via selective effects on reductase domain function

AU - Cao, Sheng

AU - Yao, Janet

AU - Shah, Vijay

PY - 2003/2/21

Y1 - 2003/2/21

N2 - The GTPase dynamin-2 (dyn-2) binds and positively regulates the nitric oxide-generating enzyme, endothelial nitric-oxide synthase (eNOS) (Cao, S., Yao, Y., McCabe, T., Yao, Q., Katusic, Z., Sessa, W., and Shah, V. (2001) J. Biol. Chem. 276, 14249-14256). Here we demonstrate, using purified proteins, that this occurs through a selective influence of the dyn-2 proline-rich domain (dyn-2 PRD) on the eNOS reductase domain. In vitro studies demonstrate that dyn-2 PRD fused with glutathione S-transferase (GST) binds recombinant eNOS protein specifically and with binding kinetics comparable with that observed between dyn-2 full-length and eNOS. Additionally, GST-dyn-2 PRD binds the in vitro transcribed 35S-eNOS reductase domain but not the 35S-eNOS oxygenase domain. Furthermore GST-dyn-2 PRD binds a 35S-labeled eNOS reductase domain fragment (amino acids 645-850) that partially overlaps with the FAD binding domain of eNOS. A recombinant form of the SH3-containing protein Fyn competes the binding of recombinant eNOS protein with dyn-2 PRD, thereby implicating the SH3-like region contained within this reductase domain fragment as the dyn-2 binding region. Mammalian two-hybrid screen corroborates these interactions in cells as well. Functional studies demonstrate that dyn-2 PRD selectively potentiates eNOS activity in a concentration-dependent manner in an order of magnitude similar to that observed with dyn-2 full-length and in a manner that requires calmodulin. Although dyn-2 PRD does not influence eNOS oxygenase domain function or ferricyanide reduction, it does potentiate the ability of recombinant eNOS to reduce cytochrome c, supporting an influence of dyn-2 PRD on electron transfer between FAD and FMN. (These data indicate that the binding domains of dyn-2 and eNOS reside within the dyn-2 PRD domain and the FAD binding region of the eNOS reductase domains, respectively, and that dyn-2 PRD is sufficient to mediate dyn-2-dependent potentiation of eNOS activity, at least in part, by potentiating electron transfer.).

AB - The GTPase dynamin-2 (dyn-2) binds and positively regulates the nitric oxide-generating enzyme, endothelial nitric-oxide synthase (eNOS) (Cao, S., Yao, Y., McCabe, T., Yao, Q., Katusic, Z., Sessa, W., and Shah, V. (2001) J. Biol. Chem. 276, 14249-14256). Here we demonstrate, using purified proteins, that this occurs through a selective influence of the dyn-2 proline-rich domain (dyn-2 PRD) on the eNOS reductase domain. In vitro studies demonstrate that dyn-2 PRD fused with glutathione S-transferase (GST) binds recombinant eNOS protein specifically and with binding kinetics comparable with that observed between dyn-2 full-length and eNOS. Additionally, GST-dyn-2 PRD binds the in vitro transcribed 35S-eNOS reductase domain but not the 35S-eNOS oxygenase domain. Furthermore GST-dyn-2 PRD binds a 35S-labeled eNOS reductase domain fragment (amino acids 645-850) that partially overlaps with the FAD binding domain of eNOS. A recombinant form of the SH3-containing protein Fyn competes the binding of recombinant eNOS protein with dyn-2 PRD, thereby implicating the SH3-like region contained within this reductase domain fragment as the dyn-2 binding region. Mammalian two-hybrid screen corroborates these interactions in cells as well. Functional studies demonstrate that dyn-2 PRD selectively potentiates eNOS activity in a concentration-dependent manner in an order of magnitude similar to that observed with dyn-2 full-length and in a manner that requires calmodulin. Although dyn-2 PRD does not influence eNOS oxygenase domain function or ferricyanide reduction, it does potentiate the ability of recombinant eNOS to reduce cytochrome c, supporting an influence of dyn-2 PRD on electron transfer between FAD and FMN. (These data indicate that the binding domains of dyn-2 and eNOS reside within the dyn-2 PRD domain and the FAD binding region of the eNOS reductase domains, respectively, and that dyn-2 PRD is sufficient to mediate dyn-2-dependent potentiation of eNOS activity, at least in part, by potentiating electron transfer.).

UR - http://www.scopus.com/inward/record.url?scp=0037458730&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=0037458730&partnerID=8YFLogxK

U2 - 10.1074/jbc.M212546200

DO - 10.1074/jbc.M212546200

M3 - Article

C2 - 12488320

AN - SCOPUS:0037458730

VL - 278

SP - 5894

EP - 5901

JO - Journal of Biological Chemistry

JF - Journal of Biological Chemistry

SN - 0021-9258

IS - 8

ER -