The influence of acoustic radiation force beam shape and location on wave spectral content for arterial dispersion ultrasound vibrometry

Margherita Capriotti, Tuhin Roy, Nicholas R. Hugenberg, Hadiya Harrigan, Hon Chi Lee, Wilkins Aquino, Murthy Guddati, James F. Greenleaf, Matthew W. Urban

Research output: Contribution to journalArticlepeer-review

Abstract

Objective. Arterial dispersion ultrasound vibrometry (ADUV) relies on the use of guided waves in arterial geometries for shear wave elastography measurements. Both the generation of waves through the use of acoustic radiation force (ARF) and the techniques employed to infer the speed of the resulting wave motion affect the spectral content and accuracy of the measurement. In particular, the effects of the shape and location of the ARF beam in ADUV have not been widely studied. In this work, we investigated how such variations of the ARF beam affect the induced motion and the measurements in the dispersive modes that are excited. Approach. The study includes an experimental evaluation on an arterial phantom and an in vivo validation of the observed trends, observing the two walls of the waveguide, simultaneously, when subjected to variations in the ARF beam extension (F/N) and focus location. Main results. Relying on the theory of guided waves in cylindrical shells, the shape of the beam controls the selection and nature of the induced modes, while the location affects the measured dispersion curves (i.e. variation of phase velocity with frequency or wavenumber, multiple modes) across the waveguide walls. Significance. This investigation is important to understand the spectral content variations in ADUV measurements and to maximize inversion accuracy by tuning the ARF beam settings in clinical applications.

Original languageEnglish (US)
Article number135002
JournalPhysics in medicine and biology
Volume67
Issue number13
DOIs
StatePublished - Jul 7 2022

Keywords

  • artery
  • dispersion
  • shear wave
  • ultrasound
  • waveguide

ASJC Scopus subject areas

  • Radiological and Ultrasound Technology
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'The influence of acoustic radiation force beam shape and location on wave spectral content for arterial dispersion ultrasound vibrometry'. Together they form a unique fingerprint.

Cite this