The HIV-1 central polypurine tract functions as a second line of defense against APOBEC3G/F

Chunling Hu, Dyana T. Saenz, Hind J. Fadel, William Walker, Mary Peretz, Eric M. Poeschla

Research output: Contribution to journalArticle

28 Scopus citations

Abstract

HIV-1 and certain other retroviruses initiate plus-strand synthesis in the center of the genome as well as at the standard retroviral 3′ polypurine tract. This peculiarity of reverse transcription results in a central DNA "flap" structure that has been of controversial functional significance. We mutated both HIV-1 flap-generating elements, the central polypurine tract (cPPT) and the central termination sequence (CTS). To avoid an ambiguity of previous studies, we did so without affecting integrase coding. DNA flap formation was disrupted but single-cycle infection was unaffected in all target cells tested, regardless of cell cycle status. Spreading HIV-1 infection was also normal in most T cell lines, and flap mutant viruses replicated equivalently to the wild type in nondividing cells, including macrophages. However, spreading infection of flap mutant HIV-1 was impaired in non-vif-permissive cells (HuT78, H9, and primary human peripheral blood mononuclear cells [PBMCs]), suggesting APOBEC3G (A3G) restriction. Single-cycle infections confirmed that vif-intact flap mutant HIV-1 is restricted by producer cell A3G/F. Combining the Δvif and cPPT-CTS mutations increased A3G restriction synergistically. Moreover, RNA interference knockdown of A3G in HuT78 cells released the block to flap mutant HIV-1 replication. Flap mutant HIV-1 also accrued markedly increased A3G-mediated G→A hypermutation compared to that of wild-type HIV-1 (a full log10 in the 0.36 kb downstream of the mutant cPPT). We suggest that the triple-stranded DNA structure, the flap, is not the consequential outcome. The salient functional feature is central plus-strand initiation, which functions as a second line of defense against single-stranded DNA editing by A3 proteins that survive producer cell degradation by Vif.

Original languageEnglish (US)
Pages (from-to)11981-11993
Number of pages13
JournalJournal of virology
Volume84
Issue number22
DOIs
StatePublished - Nov 2010

ASJC Scopus subject areas

  • Microbiology
  • Immunology
  • Insect Science
  • Virology

Fingerprint Dive into the research topics of 'The HIV-1 central polypurine tract functions as a second line of defense against APOBEC3G/F'. Together they form a unique fingerprint.

  • Cite this