TY - JOUR
T1 - The effects of growth factors associated with osteoblasts on prostate carcinoma proliferation and chemotaxis
T2 - Implications for the development of metastatic disease
AU - Ritchie, Candace K.
AU - Andrews, Laura R.
AU - Thomas, Kris G.
AU - Tindall, Donald J.
AU - Fitzpatrick, Lorraine A.
PY - 1997
Y1 - 1997
N2 - The extensive mortality and morbidity associated with prostate cancer is caused by the high prevalence of metastatic disease at the time of diagnosis. The area most frequently involved in metastatic prostate cancer is the skeleton. Unlike other cancers, which metastasize to bone and destroy the bone matrix, prostate cancer is unique in that it is osteogenic, resulting in the formation of dense, sclerotic bone with high levels of osteoblastic activity. We proposed that factors produced by bone cells may be responsible for the development of prostate carcinoma metastasis. We studied the effects of these growth factors on prostate cell proliferation by [3H]thymidine incorporation and chemotaxis by the double-filter chamber method. Three prostate carcinoma cell lines were studied, LNCaP/androgen responsive) and PC-3 and DU-145 (androgen unresponsive). The bone-associated growth factors tested were: insulin-like growth factors I and II (IGF-I, IGF-II), transforming growth factor β, interleukin (IL)-1β, IL-6, and tumor necrosis factor α (TNF-α). IGF-I and IGF-II significantly increased proliferation in all three cell lines, whereas IL-6, TNF-α, and IL-1β significantly decreased proliferation. Transforming growth factor β induced a biphasic response in proliferation in DU-145 and PC-3 cells and produced no response on LNCaP cells. Increased cell chemotaxis occurred in the presence of IGF-I and IGF-II, and decreased cell chemotaxis occurred with the addition of TNF- α and IL-1β. These data indicate that growth factors produced by bone cells alter prostate carcinoma cell proliferation and chemotaxis and suggest that modulations of the production of these factors may be a potential therapeutic intervention in deterring the metastasis of prostate carcinoma to bone.
AB - The extensive mortality and morbidity associated with prostate cancer is caused by the high prevalence of metastatic disease at the time of diagnosis. The area most frequently involved in metastatic prostate cancer is the skeleton. Unlike other cancers, which metastasize to bone and destroy the bone matrix, prostate cancer is unique in that it is osteogenic, resulting in the formation of dense, sclerotic bone with high levels of osteoblastic activity. We proposed that factors produced by bone cells may be responsible for the development of prostate carcinoma metastasis. We studied the effects of these growth factors on prostate cell proliferation by [3H]thymidine incorporation and chemotaxis by the double-filter chamber method. Three prostate carcinoma cell lines were studied, LNCaP/androgen responsive) and PC-3 and DU-145 (androgen unresponsive). The bone-associated growth factors tested were: insulin-like growth factors I and II (IGF-I, IGF-II), transforming growth factor β, interleukin (IL)-1β, IL-6, and tumor necrosis factor α (TNF-α). IGF-I and IGF-II significantly increased proliferation in all three cell lines, whereas IL-6, TNF-α, and IL-1β significantly decreased proliferation. Transforming growth factor β induced a biphasic response in proliferation in DU-145 and PC-3 cells and produced no response on LNCaP cells. Increased cell chemotaxis occurred in the presence of IGF-I and IGF-II, and decreased cell chemotaxis occurred with the addition of TNF- α and IL-1β. These data indicate that growth factors produced by bone cells alter prostate carcinoma cell proliferation and chemotaxis and suggest that modulations of the production of these factors may be a potential therapeutic intervention in deterring the metastasis of prostate carcinoma to bone.
UR - http://www.scopus.com/inward/record.url?scp=0031050633&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0031050633&partnerID=8YFLogxK
U2 - 10.1210/endo.138.3.4974
DO - 10.1210/endo.138.3.4974
M3 - Article
C2 - 9048621
AN - SCOPUS:0031050633
SN - 0013-7227
VL - 138
SP - 1145
EP - 1150
JO - Endocrinology
JF - Endocrinology
IS - 3
ER -